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1 Introduction

The intermediary asset pricing literature, pioneered by He and Krishnamurthy (2012, 2013) and

Brunnermeier and Sannikov (2014), argues that financial intermediaries play a first-order role in

determining asset prices, primarily due to market segmentation that limits household participation.

However, since households face few explicit constraints to participating in most financial markets,

some observers have questioned the relevance of the intermediary asset pricing literature. For

example, Cochrane (2017) remarks,

Furthermore, if there is such an extreme agency problem, that delegated managers were

selling during the buying opportunity of a generation, why do fundamental investors put

up with it? Why not invest directly, or find a better contract? (Cochrane (2017, p.

963))

We respond to Cochrane’s skepticism by providing a micro-foundation for why households delegate.

Specifically, we suppose both households and specialists face limits on their ability to process

information, giving rise to rational inattention (Sims (2003)). Specialists who run the intermediaries

are assumed to have greater information processing capacity. Households can effectively purchase

this additional capacity by delegating their portfolio decisions to intermediaries.

Besides introducing rational inattention, we also assume that agents in the He and Krishna-

murthy (2012) [henceforth HK] model are ambiguity averse (or equivalently, have preferences for

robustness as in Hansen and Sargent (2008)). We do this for two reasons. First, delegation only

occurs when households value information precision due to ambiguity aversion. We demonstrate

that combining log utility in HK with ambiguity aversion provides a sufficient preference condition

for portfolio delegation. Moreover, ambiguity interacts with rational inattention, thereby amplify-

ing households’ incentives to delegate. Second, incorporating ambiguity allows our model to yield

a stationary wealth distribution, enabling quantitative assessments of the data. In contrast, the

HK model features a degenerate wealth distribution in which specialists ultimately dominate. We

show that ambiguity aversion tightens the financial constraint of intermediaries and magnifies its ef-

fects. Our calibrated model can quantitatively account for both the unconditional and time-varying

moments of asset returns, with empirically plausible concerns for robustness.

The primary contribution of this paper is to endogenize households’ optimal delegation deci-

sion. An important difference between our model and the HK model is that in our model, the mean

dividend growth is stochastic and unobserved. Agents must therefore solve a filtering (learning)

problem. Ambiguity aversion and rational inattention both influence this filtering problem. Fol-

lowing Hansen and Sargent (2011), we operationalize robust filtering by supposing agents distrust

their priors, and so introduce a pessimistic drift distortion into the Kalman filter. At the same time,

the rate at which they can learn is constrained by their information processing capacity. Greater

capacity accelerates learning and produces a lower steady-state estimation risk (i.e., conditional

variance of the unobserved state). Households, being less efficient in processing information, expe-

rience higher estimation risk. With ambiguity, this leads to a welfare loss, motivating households
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to optimally delegate their investments to specialists who possess greater information capacity.

Households are willing to pay a lump-sum delegation fee to reduce estimation risk. We show that a

small difference in information capacity can rationalize an empirically plausible upfront delegation

fee.

Interestingly, we also show that ambiguity aversion and rational inattention interact. In the

absence of ambiguity, households would not choose to delegate, as seen in the HK model with log

utility, where estimation risk becomes irrelevant. Therefore, the HK model makes the extreme as-

sumption that households must delegate to intermediaries to invest in risky assets. However, in our

model, the introduction of ambiguity concerning the unobserved state effectively motivates house-

holds to delegate. Furthermore, ambiguity aversion amplifies households’ incentives to delegate.

They are willing to pay more when they are more ambiguity averse.

Our second contribution is empirical. We show that our model can quantitatively match ob-

served data. In order to bring the model to the data in a meaningful way, it is crucial for the

model to feature a stationary wealth distribution. Unfortunately, the HK model results in a degen-

erate distribution under empirically relevant parameter assumptions; that is, specialists are more

patient than households.1 Consequently, in the long run, specialists end up accumulating all the

wealth. The assumption that specialists are more patient is required to generate a procyclical

price-to-dividend ratio under log utility in HK. We adopt the same assumption to account for

this observed state dependency.2 However, introducing ambiguity about asset returns (or concerns

about model misspecification) enables our model to possess a stationary wealth distribution. De-

spite both households and specialists having the same degree of ambiguity aversion, the impact of

ambiguity aversion is inversely scaled by the time preference. Specialists become effectively more

ambiguity averse since they care more about the future. As a result, their strategically pessimistic

drift distortions are greater than those of households. In our model, this pessimism leads to more

conservative portfolio strategies, causing specialists to invest less of their wealth in risky assets. We

demonstrate that with reasonable parameter values, specialists’ relatively greater pessimism offsets

their greater patience, resulting in a stationary wealth distribution (Yan (2008)).

We show that ambiguity tightens the financial constraint and amplifies its impact due to state-

dependent belief differences. The key ingredient in the HK model is that the delegation contract

is subject to a moral hazard problem, resulting in a capital constraint faced by intermediaries,

which requires specialists to maintain a minimum amount of ‘skin in the game.’ In contrast, in our

model, belief differences are state-dependent. They widen during crises as the specialist’s wealth

1Nonstationarity of the wealth distribution is endemic to intermediary asset pricing models since they are based
on differences across agents. Many devices have been used to enforce a stationary distribution. Perhaps the most
common one is simply assuming that specialists die off at an exogenous rate (Bernanke, Gertler, and Gilchrist (1999)).
He and Krishnamurthy (2013) have identical time preferences but assume that households die off instantaneously.

2Intermediary asset pricing models generate cyclicality in risk premia by supposing that agents value assets
differently, and that during downturns assets are reallocated to relatively low valuation agents. Typically this occurs
because relatively high valuation agents are more exposed to higher yielding risky assets, so their relative wealth
declines during downturns. Brunnermeier and Sannikov (2014) model valuation differences by simply assuming that
assets yield higher returns when held by specialists. In contrast, HK model valuation differences by assuming that
specialists have a relatively low rate of time preference.
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declines, leading to a more binding capital constraint and an increase in specialists’ relative risk

exposure. Since subjective model uncertainty ‘hides behind’ objective risk, the increased leverage

of specialists makes them endogenously more pessimistic than households. This relative pessimism

drives up risk premia during crises.

Finally, we demonstrate that our model is capable of capturing both unconditional and time-

varying asset returns, while endogenously generating an empirically consistent crisis frequency and

persistence. Although we are able to derive explicit expressions for asset prices and the distribution

of wealth, these processes are highly nonlinear and feature an occasionally and endogenously binding

constraint, which makes the model challenging to fit to the data using conventional methods. In

response, we use the simulation-based methodology of ‘indirect inference’ (Gourieroux, Monfort,

and Renault (1993)). We find that the model performs well in matching unconditional moments.

It matches upfront delegation fees, the mean equity premium, the Sharpe ratio, the mean and

unconditional volatility of the risk-free rate, and the long-run frequency of crises. The model falls

somewhat short in capturing state dependence. Although it can replicate the persistence of the

equity premium and the price-to-dividend ratio, it generates only about a 150 basis point increase

in the equity premium during crises and understates movements in the price-to-dividend ratio.

We suspect the issue here is that our model-implied relative wealth variable is a poor proxy for

the financial sector’s capital. To check this, we use updated data from He, Kelly, and Manela

(2017), who construct market equity capital ratios for approximately two dozen New York Fed

primary dealers for the period 1970.01–2022.12. These firms include JP Morgan, Goldman Sachs,

and Citigroup. With this data, the model generates greater fluctuations in risk premia and the

price-to-dividend ratio. Finally, following Hansen and Sargent (2008), we discipline the degree of

pessimism in our model by requiring that the agents’ doubts be empirically plausible. In other

words, all our calibrated robustness parameters have detection error probabilities (DEPs) greater

than 10%.

Literature Review Our paper contributes to three branches of literature. First, it is connected

to developments in intermediary asset pricing within the macro-finance literature. For example,

He and Krishnamurthy (2012, 2013), Brunnermeier and Sannikov (2014), Gertler and Kiyotaki

(2015), Adrian and Boyarchenko (2012), Vandeweyer and d’Avernas (2023) develop related the-

oretical models, with He and Krishnamurthy (2018) providing an extensive survey. In contrast

to those models, which either assume segmented markets or exogenously low ‘productivity’ for

households in holding capital, our paper establishes a micro-foundation for delegation based on

information frictions. Our model implies that these frictions are more pronounced in more complex

asset markets, which is consistent with the empirical evidence in Haddad and Muir (2021). Our

paper is also related to the literature that explores the influence of beliefs on intermediary asset

returns, including studies by Krishnamurthy and Li (2021), Li (2023), and Gertler, Kiyotaki, and

Prestipino (2020). Unlike these models, where crises typically result from exogenous jump risks,

our model generates crises endogenously through belief heterogeneity driven by ambiguity, leading
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to a nonlinear amplification effect during financial downturns. In our model, while crisis episodes

may be initially triggered by negative shocks, these shocks are not themselves disasters but instead

become amplified. This distinguishes our approach from the rare disasters literature such as Rietz

(1988) and Barro (2006).

Second, our paper relates to the literature on delegated asset management. As the share of

financial assets held by institutional investors has significantly increased (Lewellen (2011), Green-

wood and Scharfstein (2013)), economists have debated whether professional asset managers possess

skills. Some studies, such as French (2008), argue that passive market portfolios outperform actively

managed ones, while others, such as Berk and Green (2004) and Berk and Van Binsbergen (2015),

emphasize the skills of managers. However, their focus is solely on the heterogeneity of specialist

skills, while our model centers on delegation driven by differences in skills between households and

managers. Furthermore, these papers do not address the source of skill heterogeneity, which we

attribute to information processing constraints. Our paper also differs from Taylor and Verrecchia

(2015) and Huang, Qiu, and Yang (2020), where delegation occurs because intermediaries have

access to private information. In our model, specialists have access to the same publicly available

information as households, but they have a higher information processing capacity. Moreover, in our

model, delegation is driven by the second moment of beliefs rather than the first moment. Kaniel

and Kondor (2013) study the interaction of delegation with manager incentives and asset prices.

Unlike our model, their model does not incorporate information; instead, delegation incurs a unit

cost that is based on the past performance of managers. Our paper shares similarities with these

studies in motivating delegation by information acquisition costs, but provides a micro-foundation

for the costs based on rational inattention. Importantly, we emphasize the delegation incentives

reinforced by ambiguity.

In terms of modeling strategy, our paper is related to the burgeoning literature on rational inat-

tention (Sims (2003)) and heterogenous information. For example, Pagel (2018) and Andries and

Haddad (2020) also base portfolio delegation on inattention, where inattention is based on informa-

tion avoidance, while Gennaioli, Shleifer, and Vishny (2015) is based on trust. In contrast, in our

model, attention is determined by information processing limits. Kacperczyk, Van Nieuwerburgh,

and Veldkamp (2016) and Kacperczyk, Nosal, and Stevens (2019) examine the optimal allocation

of attention over business cycles, where sophisticated investors have higher channel capacity. How-

ever, they do not allow agents to buy and sell this capacity. We could also interpret a specialist’s

information processing capacity as the ‘expertise’ of financial intermediaries, as in Eisfeldt, Lustig,

and Zhang (2023) and Goldstein and Yang (2015). Our paper implies that agents endowed with

higher capacities become specialists. Finally, Ordonez (2013) combines endogenous asymmetric

information with financial frictions to explain cross-country variations in interest rates and output.

He shows that countries facing higher financial frictions exhibit increased asymmetry. While the

mechanisms differ, many of his results are similar to the implications of our model.

Third, our work is related to the vast literature on asset pricing under Knightian Uncertainty.

Epstein and Schneider (2010) survey the early literature. The early literature followed Gilboa
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and Schmeidler (1989) by positing a fixed set of priors. This can result in inaction, as an agent’s

beliefs remain pinned at the boundary of the set (Dow and Werlang (1992)). Easley and O’Hara

(2009) use this framework to study how regulations that mitigate ambiguity can encourage market

participation. Hansen and Sargent (2008) refer to these as ‘constraint preferences.’ More recent

literature focuses on what Hansen and Sargent call ‘multiplier preferences,’ parameterized by the

Lagrange Multiplier on the set. Here the set of priors is not fixed. Klibanoff, Marinacci, and

Mukerji (2005) provide an axiomatization and call it ‘smooth ambiguity.’ This is the approach we

pursue here. It has the advantage of linking the ambiguity parameter to statistical decision theory.

Our contribution is to combine ambiguity with rational inattention and intermediation frictions

among heterogeneous agents. Hansen, Miao, and Xing (2022) and Luo and Young (2016) combine

robustness and rational inattention in a discrete-choice setup. Bhandari, Borovička, and Ho (2019)

and Maenhout, Vedolin, and Xing (2021) provide survey evidence supporting robustness-induced

belief distortions. Illeditsch (2011) and Condie, Ganguli, and Illeditsch (2021) show that ambiguity

can produce information inertia, leading investors to fail to process public information efficiently.

Finally, the state-dependence in the degree of robustness in our model bears some resemblance to

the business cycle models of Bidder and Smith (2012) and Jahan-Parvar and Liu (2014). However,

the stochastic volatility in their models is exogenous. Here, it arises endogenously via equilibrium

portfolio policies.

The remainder of the paper is organized as follows. Section 2 outlines the information and

market structure, the objective functions of households and specialists, and the optimal delegation

decision and portfolio choices. Section 3 imposes market-clearing and solves for equilibrium asset

prices. Section 4 outlines our indirect inference estimation strategy and compares model predictions

to U.S. asset market data. We then describe the simulation methodology we use to compute detec-

tion error probabilities, demonstrating that our agents’ doubts are empirically plausible. Finally,

Section 5 provides a few concluding remarks and offers extensions for future research. A technical

Appendix contains proofs and derivations.

2 Information, Market Structure, and Preferences

This section outlines the main ingredients of our model. We first briefly summarize the HK model

(Section 2.1). We then extend their model by assuming that the dividend growth rate is stochastic

and unobserved, which confronts agents with a filtering problem. We show how rational inattention

and ambiguity aversion influence the solution to this filtering problem (Section 2.2). Next, we turn

to the control problem of agents, and show how ambiguity about asset returns gives rise to robust

portfolio policies (Section 2.3). Finally, we explore how rational inattention and ambiguity interact

to produce portfolio delegation (Section 2.4). Interestingly, we show that even with log utility,

which normally makes estimation risk irrelevant, ambiguity about the unobserved dividend growth

state makes agents care about estimation risk, and hence can lead households to delegate their

investment decisions to intermediaries that posses greater channel capacities.
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2.1 The HK Model

Consider an infinite horizon continuous-time Lucas (1978) endowment economy populated by two

types of agents: specialists and households. There are two assets: one risky and one risk-free. Only

specialists can invest in the risky asset. However, in contrast to traditional segmented-markets

models (e.g., Basak and Cuoco (1998)), households can only indirectly invest in the risky asset by

delegating some of their wealth to the specialist. At every time t, households invest in intermediaries

run by specialists. Households cannot observe the portfolio choices of the specialist, nor can they

observe his ‘effort’ level. These unobserved choices produce a moral hazard problem. Figure 1

depicts the economy’s market structure. The intermediary sector is indicated in the middle block.
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Figure 1: Market Structure and Intermediation Relationship

Specialist wealth is Wt, and household wealth is W h
t . Households allocate T h

t to purchase

intermediary equities, with the remaining fraction used to buy riskless bonds. Intermediaries absorb

a total of T I
t dollars, consisting of T h

t from households and Wt from their own wealth. They then

allocate a fraction αt to the risky asset and 1 − αt to the riskless bond. Assuming there is a no

short-selling constraint for the intermediary, we expect αt to be greater than 1, i.e., specialists

use leverage. In this case, specialists invest more than the total intermediary capital into risky

equity and borrow (αt − 1)T I
t from the bond market. The total risky asset dollar exposure of the

intermediary is εIt , where εIt = αtT
h
t . Through an affine contract developed by HK, βt ∈ [0, 1]

is the share of returns going to the specialist, while 1 − βt goes to households. Thus, at time t,

the specialist bears a total risk exposure of εt = βtε
I
t , and the household is offered an exposure of

εht = (1− βt)ε
I
t =

(
1−βt

βt

)
εt because εIt = εht + εt.

In practice, wealth management typically involves two fees — a one-time fixed cost K̄, and an

ongoing flow cost, typically expressed as a percentage of profits. HK only consider the flow cost,

denoted as Kt, which is an endogenous variable. Later in Section 2.4 we model the fixed cost K̄

using robust filtering and information processing constraints. It will be determined by differences

in channel capacity. Households make two decisions. They first decide whether to delegate or not.

Delegation involves paying a fixed cost K̄ in order to access the channel capacity of the intermediary.
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Once delegation occurs, households then need to pay a flow cost Kt per unit of time, as in HK.

We will show in Section 3.2 that this flow cost only arises during financial crises when the capital

constraint binds. The reason is that during a crisis, intermediary capital is scarce. Therefore,

specialists have to charge a fee to allocate the capital efficiently.

The population measures of households and specialists are normalized to one. Both are infinitely

lived and have log preferences over consumption. Denote households’ (specialists’) consumption

rate as Ch
t (Ct). The household’s objective is to:

max
{Ch

t ,ε
h
t }
E
[∫ ∞

0
e−ρht lnCh

t dt

]
, (1)

while the specialist’s objective is to:

max
{Ct,εt,βt}

E
[∫ ∞

0
e−ρt lnCtdt

]
, (2)

where ρh and ρ denote the time discount rates for households and specialists, respectively. House-

holds are assumed to be more impatient than specialists, i.e., ρh > ρ. The exogenous dividend

follows a geometric Brownian motion: dDt/Dt = gdt + σdZD,t, where g and σ are constants, and

ZD,t is a Brownian motion. The endogenous risky asset return is defined as:

dRt =
Dtdt+ dPt

Pt
= µR,tdt+ σR,tdZD,t, (3)

where Pt is the risky asset price, µR,t is the expected return, and σR,t is the volatility of the risky

asset. The riskless asset is in zero-net supply and has a return rt. The risk premium is defined as:

πR,t ≡ µR,t − rt. The budget constraint for the household is given as:

dW h
t = εht (dRt − rtdt)− ktε

h
t dt+ rtW

h
t dt− Ch

t dt. (4)

Households obtain an exposure εht from the intermediary with an excess return indicated by the

first term in the budget constraint, i.e., εht (dRt − rtdt). For simplicity, define the equilibrium per-

unit-of-exposure intermediation fee households have to pay as kt ≡ Kt/ε
h
t . The second term in

the household’s budget constraint represents this flow cost. The third term is the risk-free interest

earned by the household on his own wealth. The last term is the consumption expense.

The specialist’s budget constraint is as follows:

dWt = εt(dRt − rtdt) + max
βt∈[ 1

1+m
,1]

(
1− βt
βt

)
ktε

∗
tdt+ rtWtdt− Ctdt. (5)

Specialists bear a risky exposure εt by investing their own wealth into the intermediary, earning

returns denoted by the first term. The second term is the total variable intermediation fee Kt =

ktε
h
t =

(
1−βt

βt

)
ktε

∗
t received from the households, where ε∗t is the equilibrium specialist exposure.
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Households choose εht taking the expected ε∗t as given, as they cannot observe specialists’ portfolio

choice. Specialists solve an optimal contracting problem by choosing the contract share βt to

maximize this intermediation fee, taking households’ expected exposure ε∗t as given. βt ≥ 1
1+m arises

from an incentive constraint due to moral hazard friction, a key aspect in HK. Intuitively, households

are reluctant to invest more than mεt in intermediaries unless specialists maintain 1
1+m shares of

capital, where m measures the inverse severity of agency problems. We provide a more detailed

description of the incentive constraint in Section 3.2. Solving the inner maximization problem in

Equation (5), the optimal contract can be obtained as β∗
t = 1

1+m if kt > 0 and β∗
t ∈

[
1

1+m , 1
]

if kt = 0. For simplicity, we define the per-unit-of-specialist-wealth fee as qt ≡ Kt/Wt, and the

specialist’s budget constraint can be expressed as:

dWt = εt(dRt − rtdt) + (qt + rt)Wtdt− Ctdt. (6)

The key endogenous state variable in HK is the scaled relative wealth of the specialist: xt ≡ Wt/Dt.

It is assumed to be governed by the following stochastic process:

dxt
xt

= µx,tdt+ σx,tdZD,t, (7)

where µx,t and σx,t are endogenously determined drift and diffusion coefficients (functions of xt),

respectively. They capture the nonlinear dynamics of the model. In HK, xt is not a stationary

process; it will converge to 1/ρ in the long run (specialists eventually dominate). However, we will

show later in Section 3.4 that with ambiguity, xt follows a stationary distribution.

2.2 Capacity Constrained Robust Filtering

As mentioned earlier, our model combines robust filtering and robust control. Our approach to

modeling ambiguity is based on Hansen and Sargent’s (2008) work on robustness. Agents are

assumed to have a correctly specified benchmark model of asset returns, which they distrust in

a way that cannot be captured by a conventional finite-dimensional Bayesian prior. Instead of

committing to a single model/prior, agents consider a set of unstructured alternative models and

optimize against the worst-case model. Since the worst-case model depends on an agent’s own

actions, agents view themselves as being immersed in a dynamic zero-sum game. To prevent agents

from being overly pessimistic, the hypothetical ‘evil agent’ who selects the worst-case model is

required to pay a penalty that is proportional to the relative entropy between the benchmark

model and the worst-case model. In our model, agents entertain doubts about both the model and

the underlying, time-varying, dividend growth state. Hence, they must simultaneously solve both

a robust control and a robust filtering problem.

A key benefit of our log preference specification is that we can separate these two problems. Here

we focus on the robust filtering problem, which we later use to motivate the portfolio delegation

decision. We shall see that even with log preferences, agents care about estimation risk when they

9



distrust their priors. The analysis in this section can be interpreted as combining the recursive

robust filtering approach of Hansen and Sargent (2007) with the channel capacity-constrained

Merton model of Turmuhambetova (2005) and an asset pricing model of Peng (2005).3

We assume that the dividend growth rate follows a diffusion process of the form:

dDt

Dt
= gtdt+ σdZD,t, (8)

dgt = ρg (ḡ − gt) dt+ σgdZg,t, (9)

dst = gtdt+ σsdZs,t, (10)

where ZD,t, Zg,t, and Zs,t are independent standard Brownian motions, and σ is the volatility

of dividend growth. In contrast to HK, we assume that the mean dividend growth, gt, is both

stochastic and unobserved. It follows an Ornstein-Uhlenbeck process with a long-run mean of ḡ, a

mean reversion rate of ρg, and volatility of σg. Agents can observe a noisy signal about gt, denoted as

st, with an inverse signal precision of σs. The conditional mean and variance of gt are characterized

by ĝt = Et [gt] and Qt = Et

[
(gt − ĝt)

2
]
, respectively. The posterior variance Qt characterizes the

estimation risk, which quantifies the state uncertainty agents face. The application of standard

Kalman filtering suggests that:

dĝt = ρg (ḡ − ĝt) dt+
Qt

σ
dẐD,t +

Qt

σs
dẐs,t, (11)

dQt =

[
σ2
g − 2ρgQt −Q2

t

(
1

σ2
+

1

σ2
s

)]
dt, (12)

where dẐD,t =
1
σ

(
dDt
Dt

− ĝtdt
)
and dẐs,t =

1
σs

(dst − ĝtdt) are innovations corresponding to (8) and

(10), respectively.

First, consider the capacity constraint. To model rational inattention due to finite capacity,

we follow Sims (2003) and impose the following constraint on the investor’s information processing

ability:

H (gt+∆t|It)−H (gt+∆t|It+∆t) ≤ κ∆t, (13)

where κ is the investor’s information channel capacity. κ can also be interpreted as the degree of

attention that agents are able to allocate. It is the processed information at time t; H (gt+∆t|It)
denotes the entropy of the state prior to observing the new signal at t + ∆t; and H (gt+∆t|It+∆t)

is the entropy after observing the new signal st+∆t. Equation (13) implies that the reduction in

uncertainty upon observing the new signal is bounded by the investor’s information processing

capacity κ. Therefore, κ imposes an upper bound on the signal-to-noise ratio — that is, the change

in entropy — that can be transmitted in any given period. The Kalman gain is constrained by the

agent’s channel capacity, which limits the rate of learning, as shown in Duncan (1970), Liptser and

3Using data on CDS credit spreads, Boyarchenko (2012) shows that state uncertainty and robust filtering were im-
portant in the early phase of the financial crisis. She also provides evidence that the importance of model uncertainty
increased relative to state uncertainty as the crisis unfolded.

10



Shiryaev (2001), and Luo (2017):4

1

2

Qt

σ2
s

≤ κ. (14)

Since the capacity constraint (14) always binds, these information processing constraints help de-

termine the variances of the endogenous noises as σ2
s = Qt/ (2κ). We have:

dQt =

(
σ2
g − 2ρgQt −

Q2
t

σ2
− 2κQt

)
dt.

We only focus on the steady state, where dQt = 0; thus,

Q =
− (κ+ ρg) +

√
(κ+ ρg)

2 + σ2
g/σ

2

1/σ2
. (15)

We now turn to the robustness part of the problem. Following Hansen and Sargent (2007),

the robust filter can be implemented by introducing a drift distortion into the Kalman filtering

equation for the conditional mean. The robust filtering equation can be written as:

dĝt = ρg (ḡ − ĝt) dt+
Qt

σ

(
ωtdt+ dẐt

)
+

Qt

σs
dẐs,t, (16)

where dẐt = dẐD,t−ωtdt. The process ωt is a robust distortion to the conditional mean. It reflects

the agent’s distrust of his own priors.

Denote the information processing capacities for specialists and households as κs and κh re-

spectively. We assume κs > κh, that is, specialists have a higher information processing capacity

than households. We can then write the capacity-constrained robust filter for agent i = {s, h} as:5

dĝit =

[
ρg

(
ḡ − ĝit

)
+

Qi

σ
ωi
t

]
dt+

Qi

σ
dẐi

t +
√

2κiQidẐi
s,t, (17)

where dẐi
t = dẐi

D,t − ωi
tdt, dẐ

i
D,t =

1
σ

(
dDt
Dt

− ĝitdt
)
, and dẐi

s,t =
√

2κi

Qi

(
dsit − ĝitdt

)
. Note that a

larger channel capacity, κ, accelerates learning (i.e., causes Qt to decrease faster). It also produces

a lower steady state estimation risk Q. We shall see in Section 2.4 that this can motivate portfolio

delegation under ambiguity aversion when agents have concerns about state uncertainty.

2.3 Robust Control

In addition to having doubts about the unobserved state, gt, agents also have doubts about the

model generating asset returns. In response, they formulate robust portfolio policies (Anderson,

4Specifically, from time 0 to T , the amount of mutual information between the true states and the noisy signals in

our univariate case can also be written as: I
(
gT0 ; s

T
0

)
= I

(
gT0 ; ĝ

T
0

)
= 1

2

∫ T

0
E
[∥∥σ−1

s (gt − ĝt)
∥∥2

]
dt = 1

2

∫ T

0

(
Qtσ

−2
s

)
dt.

As a result, in the steady state when T → ∞, we have: limT→∞ sup 1
T
I
(
gT0 ; ĝ

T
0

)
= 1

2
Qtσ

−2
s ≤ κ, which is just (14).

5For ease of notation, throughout the remainder of the paper, we use the superscript h to indicate households,
while we use no superscript or the superscript s to indicate specialists.
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Hansen, and Sargent (2003), Maenhout (2004)). We assume model misspecification concerns are

focused on equilibrium return processes, rather than the observable state variable dynamics. With

log preferences, this means agents do not need to hedge against changes in the investment opportu-

nity set. This enables us to obtain explicit analytical expressions for decision rules and equilibrium

returns.6 Ambiguity about asset returns implies that the budget constraints in Equations (4) and

(6) are viewed as merely a useful approximating model, associated with a benchmark probability

measure P. To ensure robustness, the agent surrounds the approximating model with a convex set

of unstructured alternatives and then optimizes against the worst-case model within the set.7 The

agent recognizes that the worst-case model depends on his own actions. If we let Q denote the

probability measure of the worst-case model, then Girsanov’s Theorem implies that the conditional

relative entropy (or Kullback-Leibler distance) between the benchmark and worst-case models is

given by a drift distortion, νt: ∫
ln

(
dQt

dPt

)
dQt =

1

2
EQ

∫ t

0
(ντ )

2dτ.

The νt process conveniently parameterizes the alternative models. A hypothetical evil agent chooses

νt subject to a relative entropy cost. Using this distortion, we can define a change of measure for

agent i as dZi
t = dẐi

D,t − νitdt, where dZi
t is a Brownian motion under Q. This drift distortion

operationalizes an agent’s defensive pessimism.

Under the distorted probability measure Q, the household’s problem becomes:8

V h
t = sup

{Ch
t ,ε

h
t }

inf
{νht ,ωh

t }
E
[∫ ∞

0
e−ρht

(
lnCh

t +
1

2θh1

(
νht

)2
+

1

2θh2

(
ωh
t

)2
)
dt

]
(18)

subject to (17) and

dW h
t =

[
εht (πR,t − kt) + rtW

h
t − Ch

t

]
dt+ σR,tε

h
t

(
νht dt+ dZh

t

)
, (19)

where V h
t = V h

(
ĝht ,W

h
t , xt

)
is the household’s value function. Note that the household’s dynamic

programming problem features three state variables: ĝht summarizes his current beliefs, W h
t is his

current wealth, and xt captures the endogenous dynamics of equilibrium asset prices. Following

Hansen and Sargent (2007), we assume that state and model uncertainty are constrained by separate

relative entropy penalties, θh2 and θh1 . The relative entropies induced by concerns about state and

model uncertainty are captured by ωh
t and νht , respectively.

6A version of the model relaxing this assumption is available upon request, yet the main results remain unchanged.
7In principle, the agent might distrust some asset returns more than others, but that is not the case here. Uppal and

Wang (2003) pursue this idea and show that more focused ambiguity can help explain observed underdiversification.
8Note, following Hansen, Sargent, Turmuhambetova, and Williams (2006), we discount increments to relative

entropy. This allows doubts to persist as the sample grows and delivers stationary decision rules.
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The specialist’s problem is very similar. It can be written as:

Vt = sup
{Ct,εt}

inf
{νst ,ωs

t }
E
[∫ ∞

0
e−ρt

(
lnCt +

1

2θ1
(νst )

2 +
1

2θ2
(ωs

t )
2

)
dt

]
(20)

subject to (17) and

dWt = [εtπR,t + (qt + rt)Wt − Ct] dt+ σR,tεt (ν
s
t dt+ dZs

t ) , (21)

where Vt = V (ĝst ,Wt, xt) is the specialist’s value function. We denote the specialist’s ambiguity

aversion about state and model uncertainty as θ2 and θ1, and the corresponding relative entropies

as ωs
t and νst . The following lemma summarizes the solutions to these two robustness problems.

Appendix 5.1 provides details of the derivations.

Lemma 1. Given log preferences, the household’s and specialist’s value functions take the additively

separable form:

V h
(
ĝht ,W

h
t , xt

)
=

1

ρh
lnW h

t + F h
(
ĝht ;Q

h
)
+ Y h (xt) , (22)

V (ĝst ,Wt, xt) =
1

ρ
lnWt + F s (ĝst ;Q

s) + Y (xt) , (23)

where F h
(
ĝht ;Q

h
)
and F s (ĝst ;Q

s) are defined in Equations (57) and (64); Y h
t and Yt (functions of

the aggregate state xt) solve the ODEs of Equations (59) and (66) given in Appendix 5.1.

The consumption policies and the optimal risk exposures are:

Ch
t = ρhW h

t , and Ct = ρWt, (24)

εht =
πR,t − kt
γhσ2

R,t

W h
t , and εt =

πR,t

γσ2
R,t

Wt, (25)

and the optimal entropy-constrained drift distortions of the control and filtering problems are:

νht = −θh1
ρh

εht σR,t

W h
t

, and ωh = − θh2
ρh (ρh + ρg)

Qh

σ
, (26)

νst = −θ1
ρ

εtσR,t

Wt
, and ωs = − θ2

ρ (ρ+ ρg)

Qs

σ
, (27)

where γh = 1 + θh1/ρ
h and γ = 1 + θ1/ρ are defined as the household’s and specialist’s effective

degree of ambiguity aversion, respectively. θh1 , θ
h
2 summarize the household’s degree of model and

state uncertainty, and θ1, θ2 summarize the specialist’s degree of model and state uncertainty.

In our calibration, we impose θ1 = θh1 and θ2 = θh2 . Both agents have the same degrees of

ambiguity aversion, so our model dynamics do not rely on the assumption of differences in investors’

risk appetites. Even though both agents have the same degree of ambiguity aversion, specialists

are effectively more ambiguity averse than households because they are more patient (ρh > ρ as in
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HK), so they care more about the future (θ1/ρ > θh1/ρ
h).9

2.4 Portfolio Delegation

Portfolio delegation is based on the fact that if κs > κh, then V h (κs) > V h
(
κh

)
. This difference

in value functions motivates trade in channel capacity. Households are willing to pay to use a

specialist’s channel. In contrast to the investment decision, the filtering efforts of the specialist in

our model are not subject to incentive constraints.10 To the best of our knowledge, our paper is

the first to motivate portfolio delegation through trading in information capacity.

In contrast to HK, we do not restrict households from directly investing in risky assets. In

fact, we assume that the decision is made once at time-0, and it is based on an ex-ante expected

value calculation, given the equilibrium prices. Since the flow delegation cost rises during crises,

households might have an incentive to opt out during crises to avoid this cost and then attempt

to enter a new contract once things return to normal. Our commitment assumption prevents

this. Once the household delegates, he no longer needs to filter.11 The probability measure used

to compute this expectation is the probability measure associated with a delegated competitive

equilibrium, reflecting our assumption that households make unilateral delegation decisions. As

a result, the F h
(
ĝht ;Q

h
)
component of V h influences the delegation decision. Since signals are

unbiased, all that matters from an ex-ante perspective is the steady state conditional second moment

of beliefs. Households prefer delegation when the estimation risk Q is lower. Additionally, the

Y h (xt) component also affects delegation, as households would not need to pay the flow cost if

they invest directly, where we take kt = 0 in the optimization problems. Y h (xt) becomes smaller

on average if households delegate, as they would need to pay a flow fee of kt > 0 during crises.

This discourages delegation. In principle, the first channel dominates if the differences in κ are

sufficiently large. In the following Proposition, we establish a lower bound on households’ optimal

delegation decisions. Detailed derivations are provided in Appendix 5.2.

Proposition 1. In the steady state, the household’s expected value function difference arising from

delegation is given by

F h(κs)− F h(κh) =
θh2

(
Qh2 −Qs2

)
2σ2ρh3 (ρh + ρg)

2 , (28)

where Qi =
−(κi+ρg)+

√
(κi+ρg)

2+σ2
g/σ

2

1/σ2 . A higher channel capacity reduces the steady state conditional

variance, that is,
dQi

dκi
< 0. (29)

9Luo and Young (2016) show that when channel capacity is endogenous, more patient agents choose to pay more
attention to fundamentals because they care more about the future. This is one way to justify our assumption that
intermediaries have higher channel capacities.

10It would be interesting to allow households to view the filtering of specialists as being ambiguous. This would
connect our paper to Easley, O’Hara, and Yang (2014), who argue that the proprietary information and trading
strategies of hedge funds are better interpreted as giving rise to ambiguity rather than asymmetric information.

11Yin (2021) provides evidence in support of this. Using data from the Survey of Consumer Finances, he finds that
households who delegate pay less attention to their portfolios.
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As long as θh2 > 0 and κs > κh,

F h(κs) > F h(κh), (30)

households choose to delegate by paying a fixed cost

K̄ = F h(κs)− F h(κh). (31)

Notice that what matters here is the interaction between state uncertainty θh2 of households

and differences in channel capacity κi. Delegation arises in equilibrium due to two reasons. First,

specialists have a higher information processing capacity (κs > κh), leading a lower steady state

posterior variance: Qs > Qh. Second, households are ambiguity averse: θh2 > 0. Without ambiguity

about the state uncertainty, θh2 = 0, differences in estimation variance Qh−Qs alone do not generate

any incentive to delegate, as expected under any expected utility framework (e.g., log utility in HK).

Moreover, ambiguity aversion amplifies households’ incentives to delegate. Capacity differences

become more important when robust concerns about state uncertainty is greater (dK̄/dθh2 > 0).

Intuitively, households are more willing to pay when they are more ambiguity averse.

In fact, ambiguity aversion gives rise to a form of preference for early resolution of uncertainty.

As a result, delegation reduces estimation risk, increases household welfare gain, and leads to

endogenous portfolio delegation. In our model, log utility combined with ambiguity aversion provide

a sufficient preference condition for portfolio delegation. Although log preferences are not necessary

for our result, without them, it becomes much more difficult to compute value functions, which

then complicates the calculation of the delegation fee. Likewise, since without log utility even

an ambiguity neutral agent would care about estimation risk (e.g., under recursive preference with

early resolution of uncertainty), ambiguity per se is not essential to our delegation result. Ambiguity

simply reinforces it.

3 Market Equilibrium

We now combine the policy functions derived in the previous section with market clearing conditions

to determine equilibrium asset prices. We demonstrate that ambiguity aversion tightens the capital

constraint and amplifies its effects in driving time-varying risk premiums. Additionally, we show

that the introduction of model uncertainty results in a stationary wealth distribution.

3.1 Equilibrium Definition

Here we provide a detailed definition of market equilibrium in our model economy:

Definition. An equilibrium for the economy is a set of prices {Pt, rt, Rt, kt}, and households’

decisions {Ch
t , ε

h
t }, and specialists’ decisions {Ct, εt, βt} such that:

1. Given the prices and quantities, agents’ consumption and portfolio decisions solve the objec-

tive functions (1) and (2).
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2. The intermediation market reaches equilibrium with the risk exposure clearing condition:

εht =
1− βt
βt

εt. (32)

3. The stock market clears:

εt + εht = Pt. (33)

4. The goods market clears:

Ct + Ch
t = Dt. (34)

3.2 Capital Constraint

The key assumption in HK is that the contractual relationship between households and interme-

diaries is subject to a moral hazard friction, which results in a minimum capital constraint. The

incentive/financial constraint is given as follows:

εht ≤ mεt, (35)

where εt and εht are the specialist’s and household’s risky exposures as given in Lemma 1. This

constraint implies that the household is less willing to supply capital to the intermediary when

the specialist is less exposed. Therefore, (35) can also be interpreted as a risk-sharing/capital

constraint. Here, m represents an inverse measure of the severity of the agency problem. The lower

m is, the more severe the agency problem, and the less capital specialists can raise from households.

If we substitute the optimal exposure policies given in Lemma 1 into the financial constraint, we

can express the constraint in terms of wealth:

W h
t ≤ m̃Wt, (36)

where m̃ ≡ γh

γ m is the effective capital constraint. When the constraint is not binding, households

allocate their entire wealth to the intermediary, so that T h
t = W h

t . In contrast, when the constraint

begins to bind, households allocate only a portion of their total wealth to the intermediary, i.e.,

T h
t = m̃Wt

(
< W h

t

)
, thus imposing a capital constraint on the specialist. Without ambiguity, the

HK model implies m̃ = m. From this, we obtain the following result:

Proposition 2. If θ1/ρ > θh1/ρ
h, then ambiguity aversion tightens the capital constraint, i.e.,

m̃ < m.

The intuition is as follows. Since θ1/ρ > θh1/ρ
h implies γ > γh, the specialist is effectively more

ambiguity averse than the household. Agents worry more about model uncertainty and become

more pessimistic when they are more patient. Since the constraint binds when the household wants

to invest while the specialist does not, ambiguity tightens the constraint because this makes the
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specialist less willing to invest compared to the household.12

3.3 Equilibrium Asset Prices

The following propositions summarize the influence of ambiguity and the capital constraint on the

dynamics of asset prices. Figure 2 plots the associated policy functions.

(a) The price/dividend ratio.

Since bonds are in zero net supply, the asset market clears when aggregate wealth equals the

market value of the risky asset,

W h
t +Wt = Pt. (37)

In equilibrium, from the goods market clearing condition (34) and the optimal consumption rules

of households and specialists, we have

ρWt + ρhW h
t = Dt. (38)

The equilibrium price/dividend ratio is thus given by:

Pt

Dt
=

1

ρh
+

(
1− ρ

ρh

)
xt =

1 +∆ρxt
ρh

, (39)

where ∆ρ ≡ ρh − ρ > 0.

Notice that ambiguity aversion only affects the price/dividend ratio through its influence on

xt. Since specialists are relatively patient, the price/dividend ratio falls as their relative wealth

decreases. Therefore, since crises are characterized by declines in specialists’ wealth, the model

generates pro-cyclical movements in the price/dividend ratio.

When the risk-sharing constraint just starts to bind, the threshold level of the state xc can be

written as: mWt = W h
t = Pt −Wt. Together with the equilibrium price/dividend ratio, this allows

us to restate the capital constraint in terms of the specialist’s scaled wealth:

xc =
1

m̃ρh + ρ
. (40)

When xt ≤ xc, the economy is within the constrained region; otherwise, when xt > xc, the economy

is unconstrained. Note that the ambiguity aversion of both households and specialists influence

xc through the effective capital constraint m̃. As the relative ambiguity of the specialist γ/γh

increases, xc increases.

(b) Specialist’s share of return and portfolio choice.

Later we shall see that the specialist’s share of the intermediary’s return plays an important role

in the dynamics of asset prices. Appendix 5.3 shows that this share can be characterized as follows:

12This is consistent with the risk premium channel in Borovička (2020). It is also consistent with Miao and
Rivera (2016), who show that the dividend payout threshold increases with robustness in their robust version of the
DeMarzo-Sannikov model.
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in the unconstrained region and constrained region, the specialist’s share of the intermediary’s

return is:

βU
t =

[
1 +

γ

γh

(
1

ρhxt
− ρ

ρh

)]−1

, and βt =
1

1 +m
, (41)

respectively. In other words, within the unconstrained region, denoted using the superscript U

throughout the paper, the specialist’s share of the intermediary’s return declines as his wealth

share declines. However, a higher relative ambiguity between specialists and households mitigates

this effect, as specialists prefer to take on less exposure than households in the presence of greater

ambiguity. Nevertheless, once the constraint binds, his share remains fixed at 1
1+m .

The specialist invests all his wealth into the intermediary in equlibrium. The specialist then

makes a portfolio choice to invest a share αt of the total intermediary wealth T I
t = Wt + T h

t into

the risky asset, and the rest into the riskless bond. Thus, the intermediary’s total exposure is:

εIt = αtT
I
t , or in other words,

εt + εht = αt(Wt + T h
t ). (42)

Given the specialist’s optimal εt choice, this can be interpreted as a constraint on the intermediary’s

portfolio. It requires the specialist to choose αt in order to reach the optimal risk exposure εt.

Similarly, households obtain their desired exposure εht by choosing how much of their wealth T h
t to

contribute to the intermediary. Notice that when αt > 1, the intermediary is leveraged.

Appendix 5.3 shows that, in the unconstrained and constrained regions, the specialist’s optimal

portfolio choice of the intermediary is as follows:

αU
t = 1, and αt =

1/xt + ρh − ρ

(1 + m̃)ρh
. (43)

That is, when the constraint does not bind, the specialist invests all of the intermediary’s eq-

uity capital in the risky asset. Notice that when the constraint binds, the intermediary becomes

leveraged (αt > 1), and its exposure increases as the specialist’s scaled wealth declines. Once the

constraint is binding, αt > 1 means the specialist holds above 100% of the total equity and borrows

(αt− 1)(Wt+T h
t ) riskless bonds. Also, when specialists are effectively more ambiguity averse than

households, so that m̃ < m, ambiguity aversion magnifies leverage.

(c) Return volatility of the risky asset.

Return volatility is a central feature of financial crises. Appendix 5.4 shows that the return

volatility is

σR,t =
1

Pt/Dt

σ

ρh −∆ρβt
. (44)

Using Equations (39) and (41), the return volatility can be explicitly determined as:

σU
R,t =

σ

1 + ∆ρxt

(
ρhγh − ργ

)
xt + γ

ρ (γh − γ)xt + γ
, and σR,t =

σρh

1 + ∆ρxt

1 +m

mρh + ρ
. (45)

In general, the effects of the specialist’s scaled wealth on return volatility are subtle. However,
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return volatility unambiguously increases once the constraint binds.

When the constraint is not binding, declines in xt have offsetting effects on σR,t. The induced

decline in Pt/Dt increases σR,t. However, the decline in the specialist’s return share offsets this.

Once the constraint binds and the return share is fixed, only the Pt/Dt effect remains, and σR,t

unambiguously increases as xt falls further.

(d) The risk premium and financial constraint.

In addition to increases in volatility, financial crises are also accompanied by large increases

in risk premia. Appendix 5.4 shows that, in the unconstrained and constrained regions, the risk

premium is given by,

πU
R,t =

σ2γγh

(1 + ∆ρxt)

[(
ρhγh − ργ

)
xt + γ

]
[ρ (γh − γ)xt + γ]

2 , and πR,t =
σ2ρhγ

xt (1 + ∆ρxt)

1 +m

(mρh + ρ)
2 . (46)

It is easy to see that ∂πU
R,t/∂θ1 > 0 and ∂πR,t/∂θ1 > 0, which show that ambiguity amplifies the

risk premium, both unconditionally and during crises. Notice that the risk premium is highly state

dependent. Risk premia increase during crises, and ambiguity amplifies this increase. The higher

risk premium is necessary to incentivize specialists, who possess low wealth and, consequently,

limited risk capacity, to bear the risk exposure. Ambiguity aversion amplifies this agency friction

in risk-sharing during crises.

(e) The market price of risk and uncertainty.

The market price of risk is defined as the Sharpe ratio. In our model, the conventional Sharpe

ratio measures a combination of risk aversion and ambiguity aversion. Ambiguity increases it

unambiguously. Barillas, Hansen, and Sargent (2009) call this induced increase ‘the price of model

uncertainty.’ Combining Equations (45) and (46), it is straightforward to obtain the market price

of risk in the unconstrained and constrained region as:

πU
R,t

σU
R,t

=
σγγh

ρ (γh − γ)xt + γ
, and

πR,t

σR,t
=

σγ

(mρh + ρ)xt
. (47)

Similar to the risk premium, in the constrained region, only the specialist’s ambiguity γ has a direct

effect on the Sharpe ratio. This reflects a central aspect of intermediary asset pricing literature,

where specialists are the ‘marginal investors’ in pricing assets.

(f) The risk-free interest rate.

The risk-free interest rate can be obtained from households’ Euler equations. As shown in

Appendix 5.4 the real interest rate in the unconstrained and constrained region is given by:

rUt = ĝst + ρh − ρ∆ρxt − σ2γ
2 (1− ρxt) + ργh2xt

[ρ (γh − γ)xt + γ]
2 , (48)

rt = ĝst + ρh − ρ∆ρxt − σ2 (1− ρxt) ρ (1 + γm) + ρhm2
(
ρh − ργh

)
xt

(1− ρxt) (ρ+mρh)
2
xt

. (49)

In the unconstrained region, the interest rate mainly reflects the disparity in agents’ time discount
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rates. In the limiting case when the economy consists only of specialists, limx→1/ρ r
U
t = ĝst +ρ−σ2,

where the specialist’s time discount rate ρ determines the interest rate. When the specialist’s

wealth share declines, and households become more involved, the interest rate converges to ρh.

Since ρh > ρ, the interest rate in the unconstrained region increases as the specialist’s wealth x

declines. In the constrained region, this effect is reversed. As the specialist’s wealth further drops,

households start to withdraw equity from the intermediary and ‘flight to safety,’ further depressing

the interest rate. With ambiguity, this effect is magnified, as both agents have greater incentives

to increase their demand for riskless bonds.
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Figure 2: Policy Functions and Asset Prices
This graph plots the specialist’s risky portfolio share αt, the risk premium πR,t, return volatility σR,t, and the risk-free
rate rt (while keeping ĝ at ḡ) for different ambiguity parameters (θ1 = θh1 ). The threshold value xc (vertical lines)
separates the constrained (left) and unconstrained (right) regions. The solid blue line shuts down ambiguity as in
HK. Parameter values are from Table 1. The dotted black line represents our benchmark case (θ1 = θh1 = 0.03).
Note that xt ∈ [3, 45] for illustrative purposes, although the actual support of xt is (1/(mρh + ρ, 1/ρ), as indicated
in Proposition 3.

Figure 2 depicts the intermediary’s optimal portfolio policy along with equilibrium asset prices

as functions of the specialist’s scaled wealth xt. We use the benchmark parameter values estimated

in the following section, which are contained in Table 1. In all cases, we assume that households

and specialists have the same degree of ambiguity aversion, θ1 = θh1 . Since ρ < ρh, this implies

that specialists are effectively more ambiguity averse in all plots, that is, γ > γh. To illustrate the
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effects of ambiguity, each panel contains four lines, pertaining to four alternative values of θ1 = θh1 .

For comparison, the blue solid line in each plot pertains to the no ambiguity case of HK.

The top left plot shows that leverage increases when the constraint binds, and ambiguity both

amplifies this effect and causes it to occur at higher levels of specialist wealth. The top right

panel plots the risk premium. Evidently, the risk premium increases as xt decreases within the

constrained region, as in HK. However, ambiguity magnifies this effect. For example, at the HK

constraint, the equity premium is only 3% in the HK model, whereas it is about 12% in our

benchmark model. It should be noted, though, that the lower bound on x in our benchmark

model is above the HK constraint, so our model would never generate such a high risk premium.

Still, it is clear that the risk premium in our model is 3-4 times higher than in the HK model,

even during tranquil periods. The bottom panels depict two other commonly observed features of

financial crises, namely, increased volatility and a decline in the risk-free rate. Ambiguity influences

return volatility through the contract share. When the constraint binds, the specialist’s share of

the intermediary’s return is fixed and independent of ambiguity. However, when the constraint is

slack, higher ambiguity mitigates return volatility because specialists want to take less exposure to

risks as they become relatively more ambiguity averse. Remember, this is a real model, so there

is nothing wrong per se with having a negative real interest rate during crisis episodes. Indeed,

short-term real rates were negative for a prolonged period following the 2008 financial crisis. Also,

there is no issue of sovereign default here, so financial crises depress the interest rate in response to

a flight to safety, rather than causing the sort of sharp increase that is so commonly seen in many

developing countries. As with the risk premium, the very low interest rates associated with very

low values of x are not empirically relevant since x has a positive lower bound.

3.4 The Stationary Wealth Distribution

To map the plots in Figure 2 into empirical predictions, we need to compute the stationary dis-

tribution of xt, which is endogenous. As noted earlier, without ambiguity aversion, a stationary

distribution does not exist in the HK model because when ρh > ρ, specialists eventually dominate

households as they are more patient and accumulate all the wealth, and so the capital constraint

never binds. However, here we show that when specialists are effectively more ambiguity averse,

the greater impatience of households can be offset by the greater ambiguity of the specialists.

In what follows, denote the equilibrium specialist’s scaled wealth process as given by the fol-

lowing diffusion equation:
dxt
xt

= µx (xt) dt+ σx (xt) dẐ
s
D,t. (50)

Note that the drift and volatility functions are state-dependent. In the unconstrained (constrained)

region, the drift and volatility are denoted by µU
x,t and σU

x,t (µx,t and σx,t). Explicit expressions for

these functions are provided in Appendix 5.5. Whether this diffusion process yields a stationary

distribution depends on the boundary properties of µx (xt) and σx (xt). Intuitively, µx (xt) should

be negative for sufficiently large xt and positive for sufficiently small xt. To derive precise condi-
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tions under which a stationary equilibrium exists, we exploit the boundary classification results in

Chapter 15 of Karlin and Taylor (1981). Using their notation, define the following function

s (y) = exp

{
−
∫ y [2µX(v)

σ2
X(v)

]
dv

}
, (51)

where µX (x) = µx (xt)xt and σX (x) = σx (xt)xt. Assuming it exists, let f(x) be the stationary

density associated with the diffusion in Equation (50). The following proposition uses the steady

state Kolmogorov-Fokker-Planck (KFP) equation to provide an explicit characterization of f(x).

Proposition 3. If the following two parameter restrictions are satisfied:

(i)
(
ρh − ρ

)
+mσ2

(
γ − γh

)
> 0,

(ii)γσ2
(
γ − γh

)
>

(
ρh − ρ

)
γh2,

then a non-degenerate stationary distribution for relative wealth, x, exists, and its support is (1/(ρ+

mρh), 1/ρ). The two endpoints are ‘entrance’ boundaries, which are unattainable in finite mean

time. The solution of the KFP equation is given by

f(x) = C1

[
1

s(x)σ2
X(x)

]
· 1(x ≤ xc) + C2

[
1

sU (x)(σU
X(x))2

]
· 1(x ≥ xc), (52)

where 1 is an indicator function, and the integration constants C1 and C2 satisfy:

1.
∫
f(x)dx = 1;

2. continuous at xc.

The proof is provided in Appendix 5.6. Notice that the first parameter restriction is always

satisfied given our assumptions (ρh > ρ and θh1 = θ1). However, the second restriction, which

applies at the upper boundary, requires that the greater ambiguity of the specialist (as scaled by

the volatility, σ2) dominates the greater impatience of the household, so that the relative wealth

distribution gets pulled to the left.13 This is a version of the ‘survival index’ discussed in Yan

(2008). Alternatively, from the perspective of Borovička (2020), at the upper boundary, the portfolio

channel must dominate the saving channel. Our benchmark parameter values (discussed in the next

section) satisfy this restriction.

We verify Proposition 3 in two ways. First, we numerically solve the steady state KFP equation

using our benchmark parameter values. The result is depicted in the right panel of Figure 3. The

dashed vertical line is the binding capital constraint, xc. Note that, in contrast to the U-shaped

13Time preference differences are not necessary for a non-degenerate distribution in our model. The crucial condition
is that specialists are more effectively ambiguity averse than households, as indicated by conditions (i) and (ii) with
γ > γh. We can relax HK’s assumption by allowing specialists to be equally or even less patient than households
(ρ ≥ ρh), while ensuring that specialists maintain a higher degree of ambiguity aversion (θ > θh), as supported by
Haddad and Muir (2021). The intuition is that as specialists become more ambiguity averse, households accumulate
wealth in the unconstrained region, shifting x to the left. Once the constraint starts binding, specialists collect
increasing flow fees k as compensation, pushing x back to the right and resulting in a stationary distribution.
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(risk-neutral) stationary distribution in Brunnermeier and Sannikov (2014), the probability of being

in the tails is quite low in our model. The fact that the mode of the distribution appears to be

at the constraint is coincidental. A lower value of θ1 shifts it to the right since the ambiguity of

specialists declines, whereas a lower value of ρ shifts it to the left since the (effective) ambiguity

of specialists increases. For the benchmark parameters, the long-run average probability that the

constraint binds is 6.1%, or about once every 16 years. This is roughly double the probability

of a ‘disaster’ (Barro (2006)). However, here a binding capital constraint does not necessarily

correspond to a disaster. Risk premia begin to rise in the constrained region, but they do not spike

as in a disaster unless x falls significantly below xc. If anything, our model likely underpredicts

disaster probabilities given that the density drops off so sharply to the left of xc.

Figure 3: Stationary Distribution
This figure plots a histogram of the specialist’s scaled wealth x using the benchmark parameters over 200 years and
10,000 independent sample paths. The vertical black dashed line separates the constrained (left) and unconstrained
(right) regions. The right panel displays a numerical solution of the KFP equation. Both panels plot x over the
support of [1/(ρ+mρh), 1/ρ].

The second check we perform is to run a Monte Carlo simulation, consisting of 10,000 repetitions,

each lasting 1,000 years. We plot the last 200 years over all repetitions as the stationary distribution.

The left side of Figure 3 reports the result. Evidently, it closely matches the numerical solution to

the KFP equation. As an additional check, we also ran Monte Carlo simulations where restriction

(ii) of Proposition 3 was violated. As predicted, the distribution becomes degenerate, with the

entire mass piled up at x = 1/ρ.

4 Quantitative Implications

4.1 Indirect Inference

Due to the endogenously binding capital constraint, our model would be difficult to estimate us-

ing traditional methods. However, it is relatively easy to generate sample paths from the model.
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Hence, it is a good candidate for the simulation-based estimation methodology of indirect inference

(Gourieroux, Monfort, and Renault (1993), Smith (1993)). The basic idea behind indirect inference

is to specify a set of (easily estimated) reduced-form ‘auxiliary functions,’ which are designed to cap-

ture features of the data of interest, i.e., comovement, volatility, and persistence. The reduced-form

parameters are estimated twice — once using the actual data, and again using repeated samples

generated from the structural model. The model is then evaluated based on how close (averaged)

estimates from the simulated data are to those from the actual data. If there are more auxiliary

function parameters than model parameters, then some sort of minimum distance/weighting matrix

must be specified. The minimum distance can be used to test the null that the structural model is

correctly specified. Note that the auxiliary functions can be misspecified.

We use two sets of auxiliary functions. The first set captures the model’s ability to explain

unconditional moments. Because many models are capable of explaining unconditional moments,

we also want to assess our model’s ability to explain state dependence in risk prices and return

premia. This is more challenging. Our second set of auxiliary functions is, therefore, based on our

model’s ability to match simple auto-regressions of equity premia and price/dividend ratios. Table

1 through 3 summarize our benchmark parameters and the data/model-implied measurements.

Several of our model’s parameters can be calibrated to outside data. For example, m is related

to the specialist’s return share. Following HK, we set m = 4, reflecting the assumption that

specialists maintain a 20% return share (i.e., 1/(1 + m)). HK cite evidence in support of this.

The mean dividend growth parameter is calibrated to match U.S. dividend data. We use the

CRSP value-weighted monthly portfolios of all stocks from 1929.01–2022.12 to estimate annual

dividends. This implies ḡ = 0.018, σg = 0.007, and ρg = 0.06. The model-based mean, volatility,

and autocorrelation of dividend growth are 1.26%, 15.47%, and 0.24, which are fairly close to

1.54%, 10.80%, and 0.19 in the data. The information processing capacities are determined by two

considerations. First, we choose the household’s capacity as κh = 0.01 to align with the literature

on rational inattention, e.g., Luo (2010).14 Second, we calibrate the specialist’s channel capacity,

κs = 0.04, so that the implied delegation fee is consistent with empirical data. Empirical evidence

suggests that upfront management fees are approximately 1.5–2.5% of invested assets (Greenwood

and Scharfstein (2013))). More specifically, to calculate the corresponding fixed cost, we follow

Cochrane (1989) and use K̄/V h′(W h
t ) to measure the money loss due to limited capacity. Our

model implies that this fee is approximately 2.46% of wealth.15

This leaves (σ, ρ, ρh, θ1) as the free parameters. The first set of auxiliary functions consists

of the following five unconditional moments: the mean equity premium, the mean risk-free rate,

the mean price/dividend ratio, and the standard deviations of the risky return and price/dividend

ratio for the period 1929.01–2022.12. The second set of auxiliary functions includes the intercept

14This value is consistent with Luo (2010) in which κh is calibrated to match individual households’ risky asset
holdings as observed in the data. κh is also chosen to keep ĝ close to ḡ. This prevents DEPs from becoming implausibly
low. Notice from Equation (26) that the magnitude of the household’s filtering distortion ωh depends positively on
estimation variance, Qh, which in turn depends negatively on capacity, κh (Equation (15)). The magnitude of filtering
DEP, therefore, depends on the difference between ĝ and ḡ.

15More specifically, Lemma 1 implies K̄

V h′(Wh
t )

/Wh
t = ρhK̄.
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and autoregressive coefficient in simple univariate AR(1) processes for the equity premium and

price/dividend ratio. For the equity premium data, we use estimates from a simple dividend yield

forecasting model (Fama and French (1988), Cochrane (2011)). Specifically, we estimate the risk

premium by projecting the excess return based on the one-year lagged dividend yield and time

trend. Monthly price/dividend data is sourced from Robert Shiller’s webpage, while stock market

excess returns and risk-free rates are obtained from Kenneth French’s data library. All nominal

quantities are adjusted for inflation using the annual CPI. The weighting matrix used to match the

4 parameters to the 10 targets is described in Appendix 5.7.

In Section 4.5, we further discipline the ambiguity aversion parameters (θ1 = θh1 and θ2 = θh2 )

using DEPs. Following Hansen and Sargent (2008), we require DEPs to exceed 10% to reflect

reasonable concerns for robustness. In our calibration, the specialist’s DEP for the robust control

parameter θ1 is 11.69%, while the household’s DEP for θh1 is 16.74%. The specialist’s DEP for the

robust filtering parameter θ2 is 28.25%, and the household’s DEP for θh2 is 34.59%.

4.2 Estimates

Table 1 contains calibrated and estimated benchmark parameter values. The grid search con-

strained θ1 = θh1 , θ2 = θh2 , ρ
h > ρ, and imposed restriction (ii) in Proposition 3. This ensures a

stationary wealth distribution and assumes that, absent discounting effects, the ambiguity aversion

of households and specialists is the same. For each candidate parameter value, we simulate 10,000

independent observations over 1,000 years. We then average across repetitions and use the final

200 years to compute moments and regressions. Our model is simulated at monthly frequencies

and aggregated to appropriate frequencies for comparison with the data.

Table 1: Benchmark Parameters

Panel A. Preferences and Intermediation

ρ Specialist Time Discount Rate 0.013

ρh Household Time Discount Rate 0.023

θ1
(
θh1

)
Specialist (Household) Model Uncertainty Preference 0.03

θ2
(
θh2

)
Specialist (Household) State Uncertainty Preference 0.12

κs Specialist Information Channel Capacity 0.04

κh Household Information Channel Capacity 0.01

m Intermediation Multiplier 4

Panel B. Equity Market

ḡ Mean Dividend Growth Rate 0.018

σ Dividend Growth Volatility 0.185

σg Unobserved Dividend Growth Volatility 0.007

ρg Mean Reversion Rate of Unobserved Dividend Growth 0.06

The data moments and model estimates are summarized in Table 2. There are several points

to notice. When agents are concerned about model misspecification, our model produces an 8.53%
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equity premium per year, 17.74% return volatility per year, and a 48.12 Sharpe ratio, which are very

close to the same moments (7.53%, 18.67%, and 40.34) in the data. Second, our model generates

an average risk-free rate of 0.23%, with a standard deviation of 1.19% per year. Both moments

are close to their data counterparts (0.17% and 1.09%). Hence, we avoid the risk-free rate puzzle.

Third, and perhaps most important, remember that the HK model does not produce recurrent

crises. Asymptotically, the constraint never binds. In contrast, in our model, the constraint binds

6.08% of the time. This implies crises occur on average about once every 16 years. It is important

to keep in mind that the crises here are not exogenous events; they are endogenous. Although crises

occur in response to negative shocks, the shocks themselves are not disasters. Nor are the crises here

i.i.d. Their conditional probability depends on the distribution of wealth. This is consistent with

recent work in the rare disasters literature, which emphasizes the non-i.i.d. nature of disasters (Tsai

and Wachter (2015) provide a survey). In our model, a small negative shock in dividends will be

amplified through ambiguity because ambiguity tightens the capital constraint. This amplification

effect arises from the heterogeneous beliefs between the two agents and endogenously produces

higher probabilities and long persistence of financial crises. The only significant discrepancy is the

model’s price/dividend ratio. The mean is about 50% too high, and the volatility is too low. We

could easily match the mean by raising the rates of time preference. However, for given values of

θ1, this would reduce predicted risk premia. Increasing the θ1 to compensate would then reduce

detection error probabilities.

Table 2: Measurements and Estimates

Data Model Data Model

Risk Premium (%) 7.53 8.53 P/D Mean (%) 34.12 55.43

Return Volatility (%) 18.67 17.74 P/D Volatility (%) 16.96 3.68

Sharpe Ratio 40.34 48.12 Delegation Fee K̄ (%) 2.50 2.46

Interest Rate (%) 0.17 0.23 Prob. of Crisis (%) 6.08

Interest Rate Volatility (%) 1.09 1.19 Specialist DEP for θ1 (%) 11.69

Dividend Growth Mean (%) 1.54 1.26 Household DEP for θh1 (%) 16.74

Dividend Growth Volatility (%) 10.80 15.47 Specialist DEP for θ2 (%) 28.25

Dividend Growth AR(1) 0.19 0.24 Household DEP for θh2 (%) 34.59

This table reports annualized unconditional moments. We simulated 1,000 years and 10,000 independent sample
paths using our benchmark parameters. We report means from the final 200 years over all sample paths. DEPs are
calculated based on the final 50 years. The data include the period 1929.01–2022.12.

Table 3 shows that our model successfully captures the time-varying and state-dependent equity

premium and price/dividend ratio. Specifically, the autoregressive coefficients in the model are 0.986

and 0.997, which closely align with the data’s coefficients (0.975 and 0.997) for the risk premium

and price/dividend ratio, respectively. Moreover, the implied long-run means are also in close

agreement: 0.001 and 0.151 in the model, compared to 0.001 and 0.122 in the data.
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Table 3: Persistence

Data Model

Risk Premium: AR(1) Coefficient 0.975 0.986

Risk Premium: Intercept 0.001 0.001

P/D: AR(1) Coefficient 0.997 0.997

P/D: Intercept 0.122 0.151

This table reports AR(1) coefficients and constants estimated from risk premium and price/dividend ratio monthly
data (1929.1–2022.12), as well as the model-implied coefficients and constants.

4.3 Sample Paths

Although it is encouraging that the model matches the unconditional moments of asset returns,

many other models can do this as well. The value-added of the HK model is to explain the

nonlinear, state-dependent dynamics of asset returns. For example, a significant portion of the

average equity premium is generated during infrequent crisis episodes when it rises dramatically.

Generating strong counter-cyclicality in risk prices and risk premia is more challenging. Perhaps

the best way to assess this ability is to simply look at sample paths produced by the model. Figure

4 displays a representative sample path using our benchmark parameters. The time unit is a year.

The red rectangular areas indicate times when the constraint binds. The top left panel plots the

specialist’s scaled wealth, which is the model’s key endogenous state variable. The top right panel

plots the drift distortions of the specialist and household, while the bottom left panel plots their

difference. The bottom right panel plots the risk premium, with the black horizontal line depicting

the sample mean.

These plots nicely reveal the model’s key forces. As in HK, the top left plot shows that crises

occur when the specialist’s wealth declines. The top right and bottom left plots depict the new

mechanism produced by model uncertainty. Note that as the specialist’s wealth declines, he be-

comes relatively pessimistic, i.e., his relative drift distortion increases. This occurs because he

endogenously becomes more exposed to the risky asset. This endogenous belief heterogeneity am-

plifies the rise in risk premia, as depicted in the bottom right plot. The risk premium rises by

about 150 basis points, from about 8% to 9.7%. It is interesting to observe that the constraint

can easily bind for as long as a decade, capturing the observed persistence of crises. For example,

Nakamura, Steinsson, Barro, and Ursúa (2013) report a mean disaster duration of 6 years based

on consumption data from a sample of 24 countries. In contrast, He and Krishnamurthy (2013)

emphasize that most crisis models have difficulty capturing the duration of crises. Finally, note

that these crisis episodes contribute significantly to average equity premia and Sharpe ratios. As

you would expect from Figure 2, when the constraint is slack, the equity premium and Sharpe ratio

are nearly constant.
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Figure 4: A Representative Sample Path
This figure plots a representative sample path over 100 years using the benchmark parameters. The horizontal axis
represents years. Red rectangular regions indicate the constrained region. The black horizontal line in the bottom
right panel represents the unconditional mean for the risk premium. Specialist scaled wealth and risk premium are
defined in Equations (50) and (46), respectively. The dividend drift distortion from both agents are defined as −σνs

t

and −σνh
t .

4.4 Implications From Observed Capital Ratios

A 100–150 basis point increase in the risk premium is significant but still less than the increases

observed during actual crises, where spreads often increase by several hundred basis points. We

suspect that the failure of our model to fully match the magnitude of the increase arises from the

fact that our model-generated wealth process produces less variation than observed in the data. We

can check this by using data from He, Kelly, and Manela (2017). They collect data on market-value

capital ratios for the New York Fed’s primary dealers. These institutions actively trade in most,

if not all, asset markets. Although there is heterogeneity across dealers, they compute a simple

value-weighted average to correspond with our model’s assumed ‘representative’ specialist.16 We

can then use this observed capital ratio in place of xt in the equilibrium pricing equations of our

16There is also considerable heterogeneity across assets. However, their empirical results suggest that the model’s
assumption of a single risky asset might not be a bad approximation, since the estimated price of risk is quite similar
across asset classes.
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model. Figure 5 depicts the results for the period 1970.01–2022.12.

Figure 5: Model Implied Risk Premium and Price/Dividend Ratio
This figure plots the model-implied risk premium and price/dividend ratio by imputing He, Kelly, and Manela (2017)
data (solid red lines) against the estimated risk premium from our dividend yield forecasting model and price/dividend
ratio from Shiller’s webpage (dashed black lines) for the period 1970.01–2022.12. The grey shaded bars depict NBER
recessions.

The left panel displays the risk premium, and the right panel displays the price/dividend ratio.

For comparison, the red solid lines are from the model, and the black dashed lines plot the data.

With the data of He, Kelly, and Manela (2017), our model generates greater time-varying risk pre-

mium and price/dividend ratio. Perhaps not surprisingly, given Figure 2, during normal times, the

model generates little variation in the equity premium and price/dividend ratio. Notice, however,

that during recessions, the model generates significant spikes in the equity premium. For example,

during the financial crisis of 2008-09, the model generates an increase in the equity premium of

nearly 15 percentage points. Interestingly, the most apparent discrepancy occurs during the dotcom

boom of the late 1990s, which corresponds to a very low equity premium. The inability of Inter-

mediary Asset Pricing models to generate booms in asset prices and low risk premia is well-known.

Krishnamurthy and Li (2021) show that adding ‘sentiments’ can remedy this deficiency. Therefore,

a potential extension of our model to capture the larger variation in xt is to incorporate stochastic

volatility in dividends. We leave this for future research.

4.5 Detection-Error Probabilities

We have seen that the ambiguity aversion parameters (θ1, θ
h
1 , θ2, θ

h
2 ) play an important role in our

model’s ability to fit the unconditional moments and state dependent dynamics of asset returns.

It is possible to view these parameters as solely a reflection of preferences and allow them to
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be unrestricted. However, following Hansen and Sargent (2008), we prefer to interpret them as

reflecting both the presence of ambiguity and the agent’s preference for robustness.17 Under this

interpretation, it is important to discipline the magnitude of (θ1, θ
h
1 , θ2, θ

h
2 ). In particular, we do

not want to allow agents to hedge against empirically implausible alternative models.

Plausibility is quantified using detection error probabilities (DEPs). Agents are viewed as

statisticians who attempt to discriminate among models using likelihood ratio statistics after

seeing a finite sample, T , of observations. Letting LP and LQ represent the likelihood of the

null/approximating model and the alternative/distorted model, the log-likelihood ratio is given by

l = log
(

LP
LQ

)
. Therefore, maximizing the likelihood ratio will successfully select model P when

l > 0 (or equivalently, LP > LQ) and select model Q when l < 0 (or equivalently, LQ > LP). DEPs

are based on an equally-weighted average of Type I and Type II errors:

DEP =
1

2
Prob

(
l < 0

∣∣∣P)+
1

2
Prob

(
l > 0

∣∣∣Q)
. (53)

That is, the probability that agents select model P (Q) when model Q (P) is actually the true

data generating process. Hence, a DEP∈ [0, 0.5] is analogous to a p-value. Agents assign equal

prior probabilities of 0.5 to both models. Therefore, a DEP equal to 0.5 means the two models are

identical and cannot be distinguished. When likelihood ratio statistics are large, DEPs are small,

and models are easy to distinguish. DEPs converge to zero when models are very different or when

there is a lot of data; in this case, agents have no concerns about ambiguity. Therefore, as stated

in Hansen and Sargent (2008), DEPs greater than about 10% indicate a reasonable preference for

ambiguity, i.e., agents want to make robust decisions against plausible alternative models. We

compute DEPs using the Monte Carlo simulation strategy outlined in Chapter 9 of Hansen and

Sargent (2008). Appendix 5.8 provides the proof and closed-form solutions. Figure 6 depicts the

results using our benchmark parameters after observing T = 50 years of simulated data.18

As in Hansen and Sargent (2007), each agent has two robustness parameters, one pertaining to

the control problem, θi1, and one pertaining to the filtering problem, θi2. The left panel of Figure

6 plots DEPs as a function of the robust control parameter, θi1, holding constant the filtering

parameter at its benchmark value. On the other hand, the right panel shows DEPs as a function

of the robust filtering parameter, θi2, with the robust control parameter held at its benchmark

value. We can see that DEPs remain above 5% for values of θi as large as 0.05 in our sample of 50

years. In contrast, the frictionless model of Barillas, Hansen, and Sargent (2009) can only attain

the Hansen-Jaganathan bound with DEPs below 0.05.

17In discrete-time models, it is possible to distinguish the presence of ambiguity from the agent’s aversion to
ambiguity (see e.g., Klibanoff, Marinacci, and Mukerji (2005), Ju and Miao (2012) and Gallant, Jahan-Parvar, and
Liu (2019)). However, in the continuous-time limit, one must rescale θ1 to maintain ambiguity aversion (see Hansen
and Miao (2018) for details). Given the hidden state in our model, we could in principle distinguish ambiguity from
ambiguity aversion. We leave this for future work.

18T = 50 years is intended to match the actual data from 1970–2022. Note, T cannot be infinity since DEPs will
converge to zero.
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Figure 6: Detection Error Probability
This figure plots detection error probabilities for the specialist and household. In the left panel, we fix θ2 = θh2 at
the benchmark value in Table 1 and then plot the DEP against θ1(= θh1 ). In the right panel, we fix θ1 = θh1 at the
benchmark value in Table 1 and then plot the DEP against θ2(= θh2 ). Other parameters are from Table 2.

5 Conclusion

This paper introduces two new elements into the Intermediary Asset Pricing literature. First, we

formalize the notion of ‘complexity’ in Cochrane’s critique and motivate portfolio delegation by

assuming agents face information processing constraints. Portfolio delegation allows households to

purchase the higher channel capacity of financial intermediaries. Second, we assume that house-

holds and specialists are ambiguity averse. We demonstrate that capacity differences become more

important in the presence of greater ambiguity, and ambiguity tightens the incentive constraint

and amplifies its effects in driving asset returns. Our model can quantitatively match both the

unconditional asset pricing moments and the time-varying prices of risk. Additionally, our model

endogenously generates an empirically plausible probability and persistence of financial crises.

Although Lucas-style models are convenient for studying asset pricing, they have the drawback

of eliminating feedback from asset prices to the real economy. It is widely believed that the financial

crisis of 2008-09 featured such feedback. Therefore, a useful extension of our model would be to

introduce ambiguity and information processing constraints into the production-based asset pricing

model He and Krishnamurthy (2019).

Another extension would be to combine our analysis with the Complex Asset Markets model

of Eisfeldt, Lustig, and Zhang (2023). They also study the pricing implications of a model that

combines ‘experts’ and ‘non-experts.’ In contrast to our model, where channel capacity differences

are exogenous, agents in their model can choose whether to become experts. Becoming an expert

is beneficial because it reduces idiosyncratic investment risk. The key mechanism in their model

is endogenous entry and exit, and their induced selection effects. However, in their model, funds

cannot be reallocated across investors, and there is no trade in expertise. As a result, there is no

moral hazard problem or capital constraint. Combining endogenous expertise, equilibrium entry
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and exit, portfolio delegation, and moral hazard would be challenging but also potentially quite

fruitful.
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Appendix

5.1 Solving the Agents’ Optimization Problems

Proof of Lemma 1. Using Ito’s Lemma, the HJB equation is:

ρhV h = sup
{Ch

t ,ε
h
t }

inf
{νht ,ωh

t }

[
lnCh

t +DV h + νht σ
h
R,tε

h
t V

h
w + ωh

t

Qt

σ
V h
g +

1

2θh1

(
νht

)2
+

1

2θh2

(
ωh
t

)2
]
, (54)

where D[·] is the Dynkin operator,

D
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x µx,txt +
1

2
V h
xxσ

2
x,tx

2
t + V h

wxσx,txtε
h
t σR,t + V h

xgσx,txt
Qh

σ
.

Solving the infimization part first yields νht = −θh1ε
h
t σR,tV

h
w and ωh

t = −θh2
Qh

σ V h
g . Substituting

them back into the HJB equation gives:

ρhV h = sup
{Ch

t ,ε
h
t }

[
lnCh

t +DV h − θh1
2
(εht σR,tV

h
w )

2 − θh2
2

(
Qh

σ
V h
g

)2
]
. (55)

Note that ambiguity makes the agent dislike the variance of continuation utility. The optimal

household consumption and portfolio rules under robustness are

Ch
t =

1

V h
w

, and εht =
−V h

w

V h
ww − θh1V

h2
w

(πR,t − kt)

σ2
R,t

, (56)

respectively. Guessing and subsequently verifying the value function in the form of Equation (22),

where

F h
(
ĝht ;Q

h
)
= Ah

(
ĝht − ḡ

)
+Bh, (57)

we have V h
w = 1

ρhWh
t
, V h

ww = − 1
ρh(Wh

t )2
, V h

gg = 0, and all the cross terms are zero, i.e., V h
wx = 0,

V h
wg = 0, and V h

xg = 0. Substituting these expressions into the FOCs in (56) yields the consumption

and portfolio rules for households in Lemma 1. Further substituting these back into the HJB

equation, we can obtain the following system of ODEs for F h
(
ĝht ;Q

h
)
and Y h (xt):

ρhF h =
ĝht − ḡ

ρh
+ ρg

(
ḡ − ĝht

)
F h
g − θh2

2

Qh2

σ2
F h2
g , (58)

ρhY h = ln ρh − 1 +
r̂ht
ρh

+
(πR,t − kt)

2

2ρhγhσ2
R,t

+ Y h
x µx,txt +

1

2
Y h
xxσ

2
x,tx

2
t , (59)

where r̂h (xt) = rt −
(
ĝht − ḡ

)
is only a function of xt. Solving (58) gives

Ah =
1

ρh (ρh + ρg)
, and Bh = − θh2Q

h2

2ρh3 (ρh + ρg)
2
σ2

. (60)
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Similarly, the specialist’s problem can be solved following a similar procedure. The HJB equa-

tion for the specialist is given by:

ρV = sup
{Ct,εt}

inf
{νt,ωt}

[
lnCt +DV + νst σR,tεtVw + ωt

Qs

σ
Vg +

1

2θ1
(νst )

2 +
1

2θ2
(ωs

t )
2

]
, (61)

where

D [V ] = Vw [εtπR,t + (qt + rt)Wt − Ct] +
1

2
Vwwεt

2σ2
R,t + Vwg

σR,t

σ
εtQ

s + Vgρg (ḡ − ĝst )

+
1

2
Vgg

(
Qs2

σ2
+ 2κQs

)
+ Vxµx,txt +

1

2
Vxxσ

2
x,tx

2
t + Vwxσx,txtεtσR,t + Vxgσx,txt

Qs

σ
.

Solving the infimization part first yields νst = −θ1εtσR,tVw and ωs
t = −θ2

Qs

σ Vg. Substituting them

back into the HJB equation gives:

ρV = sup
{Ct,εt}

[
lnCt +DV − θ1

2
(σR,tεtVw)

2 − θ2
2

(
Qs

σ
Vg

)2
]
. (62)

Optimal specialist consumption and portfolio rules are therefore

Ct =
1

Vw
, and εt =

−Vw

Vww − θ1V 2
w

πR,t

σ2
R,t

, (63)

respectively. Guessing the value function takes the form of Equation (23), where F s (ĝst , Q
s
t ) satisfies

F s (ĝst ;Q
s) = As (ĝst − ḡ) +Bs, (64)

and under this conjectured form, Equation (63) yields the optimal consumption and portfolio rules

for the specialist in Lemma 1. Further substituting these back into the HJB equation, we can

obtain F s (ĝst ;Q
s) and Y (xt) that solve the following system of ODEs:

ρF s =
ĝst − ḡ

ρs
+ ρg (ḡ − ĝst )F

s
g − θ2

2

Qs2

σ2
F s2
g , (65)

ρY = ln ρ− 1 +
qt + r̂st
ρh

+
π2
R,t

2ργσ2
R,t

+ Yxµx,txt +
1

2
Yxxσ

2
x,tx

2
t , (66)

where r̂s (xt) = rt − (ĝst − ḡ). Solving (65) finally gives

As =
1

ρ (ρ+ ρg)
, and Bs = − θ2Q

s2

2ρ3 (ρ+ ρg)
2 σ2

. (67)
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5.2 Solving the Optimal Delegation Problem

In the steady state, when dQi
t = 0, we have:

Qi2 + 2σ2
(
κi + ρg

)
Qi − (σgσ)

2 = 0. (68)

It is straightforward to show that

dQi

dκi
= − σ2Qi

Qi + σ2 (κi + ρg)
< 0. (69)

In the last section, we established that F h
(
ĝht ;Q

h
)
takes the form of Equation (57). Evaluating

this expression at ĝ = ḡ, we can deduce that the household’s expected value function difference

arising from delegation is given by:

F h(κ)− F h(κh) =
θh2

(
Qh2 −Qs2

)
2σ2ρh3 (ρh + ρg)

2 , (70)

which defines the delegation fee as provided in Proposition 1.

5.3 Proofs of Capital Constraints

In section 3.2, we defined the capital constraint as follows:Unconstrained: mεt > εht , βt ≥ 1
1+m ,

Constrained: mεt = εht , βt =
1

1+m .

The exposure fee kt is determined by the supply and demand of risky asset exposure. The specialist’s

exposure supply is a step function:{
Unconstrained: εht ∈ [0,mεt] , for any βt ∈

[
1

1+m , 1
]

and kt = 0,

Constrained: mεt with βt =
1

1+m and kt > 0.
(71)

In contrast, the household’s exposure demand depends negatively on kt, and is εht =
πR,t−kt
γhσ2

R,t
W h

t .

Notably, both the exposure supply and demand curves are influenced by ambiguity aversion. Figure

7 illustrates the equilibrium intermediary fee under two distinct cases. The left panel depicts the

situation where the capital constraint is binding (kt > 0), reflecting the scarcity of intermediary

capital. Conversely, the right panel depicts the case when the constraint is not binding, resulting in

intermediary capital being plentiful, and thus kt = 0. In summary, the equilibrium intermediation

flow fees can be characterized as follows:

kUt = 0 and kt > 0,

qUt = 0 and qt > 0,
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in the unconstrained and constrained region, respectively.
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'! 	
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Figure 7: Equilibrium Intermediation Fee

Solving the optimal contract. In the unconstrained case, let’s begin by analyzing the derivation

of the optimal share of the return contract. Recall that this share is defined as βt ≡ εt
εt+εht

.

By substituting the optimal risky exposure obtained from Equation (25), where kt = 0, we can

determine the choice of the share contract as follows:

βU
t =

εt

εt + εht
=

Wt

Wt +
γ
γhW

h
t

and kt = 0. (72)

Now the specialist and household no longer hold the equity claims according to their wealth contri-

butions as the benchmark case, but with a distortion term γ
γh , which equals the inverse of distortion

on the capital constraint. Note that although the agency friction parameter m does not directly

affect βU
t in the unconstrained region, both robustness parameters distort the contract share alter-

natively. Replacing W h
t with asset market clearing condition (37) yields:

βU
t =

Wt

Wt +
γ
γh (Pt −Wt)

=
xt

xt +
γ
γh (P/D − xt)

=
1

1 + γ
γh

(
1

ρhxt
− ρ

ρh

) ,
where we used the equilibrium price/dividend ratio (39). Additionally, due to the imposed assump-

tion that 0 ≤ βU
t ≤ 1, xt must be constrained within the range [0, 1/ρ].

In the constrained region, the share of return is determined by the incentive constraint of the

specialist. To prevent the specialist from shirking, households need to pay a positive intermediation

fee and exposure price to the intermediary. As a result,

βt =
1

1 +m
and kt > 0.

Solving optimal portfolio holdings. Recall that the specialist’s portfolio share is defined as

αt ≡ εIt /T
I
t = (εt + εht )/(Wt + T h

t ). In the unconstrained region, T h
t = W h

t , households invest all

their wealth in intermediation. This leads to αt = (εt+εht )/(Wt+W h
t ). The equilibrium conditions
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(33) and (37) yield

αU
t = 1.

In the constrained region, where T h
t = m̃Wt(≤ W h

t ), households allocate only a portion of their

wealth to intermediation. Consequently, the specialist’s portfolio share is given by:

αt =
εIt

Wt + T h
t

=
Pt

(1 + m̃)Wt
=

P/D

(1 + m̃)xt
=

1
xt

+ ρh − ρ

(1 + m̃)ρh
.

The risk exposure for the specialist is defined as

εt = βtε
I
t = βtPt, (73)

where we used the market clearing condition (33). Combining this with the optimal βt derived in

Equation (41) gives

εUt =
1

1 + γ
γh

(
1

ρhxt
− ρ

ρh

)Pt, and εt =
1

1 +m
Pt.

5.4 Solving for Asset Prices

The return volatility. The cumulative return process of the stock follows

dRt =
Dtdt+ dPt

Pt
= µR,tdt+ σR,tdẐ

s
D,t. (74)

Note that after delegation, both households and specialists use the specialist’s channel capacity,

which leads to only specialists engaging in filtering. Therefore, changes in returns are dependent

on the shocks within the specialist’s filtering process, Ẑs
D,t. Rewriting the price/dividend ratio (39)

as Pt =
Dt+(ρh−ρ)Wt

ρh
, and then applying Ito’s lemma, we obtain:

dRt =
Dtdt+ dPt

Pt
=

dDt +
(
ρh − ρ

)
dWt + ρhDtdt

ρhPt
, (75)

where the dividend process and the specialist’s budget constraint under the physical measure are

as follows:

dDt = ĝstDtdt+ σDtdẐ
s
D,t, (76)

dWt = [εtπR,t + (qt + rt)Wt − Ct] dt+ σR,tεtdẐ
s
D,t. (77)

The return volatility can be derived from matching the diffusion terms such that

σR,t =
σDt +

(
ρh − ρ

)
εtσR,t

ρhPt
⇔ σDt

ρhPt − (ρh − ρ)εt
=

1

Pt/Dt

σ

ρh − (ρh − ρ)βt
. (78)
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Using Equations (39) and (41), we obtain

σU
R,t =

σ

1 + ∆ρxt

(
ρhγh − ργ

)
xt + γ

ρ (γh − γ)xt + γ
and σR,t =

σρh

1 + ∆ρxt

1 +m

mρh + ρ
, (79)

as presented in the main text.

The risk premium. Rewriting the specialist’s optimality condition (25), and combining it with

(73), we obtain the following expression:

πR,t =
γσ2

R,tεt

Wt
=

γσ2
R,tβtPt

Wt
=

γσ2
R,tβt(Pt/Dt)

xt
. (80)

In the unconstrained region, we have

πU
R,t =

γσU2
R,tβ

U
t (Pt/Dt)

xt
=

σ2γγh

(1 + ∆ρxt)

[(
ρhγh − ργ

)
xt + γ

]
[ρ (γh − γ)xt + γ]

2 . (81)

By contrast, in the constrained region,

πR,t =
γσ2

R,tβt(Pt/Dt)

xt
=

σ2γρh

xt (1 + ∆ρxt)

1 +m

(mρh + ρ)
2 . (82)

Solving the exposure price and intermediation fee. In the unconstrained region, kUt = 0, while

in the constrained region, kt ≥ 0. When the household’s desired exposure demand equals the

specialist’s exposure supply (see Equation (25)), i.e., εht (kt) = mεt, we arrive at:

πR,t − kt
γhσ2

R,t

W h
t = m

πR,t

γσ2
R,t

Wt, (83)

which gives

kt =

(
1− m̃

Wt

W h
t

)
πR,t =

(
1− m̃ρhxt

1− ρxt

)
πR,t,

where we use the fact that m̃ =
(
γh/γ

)
m. Hence, the optimal per-unit-of-exposure intermediation

fee can be summarized as

kUt = 0, and kt =
σ2(1 +m)

(mρh + ρ)
2

(
γ − ρhγhmxt

1− ρxt

)
ρh

(1 + ∆ρxt)xt
, (84)

by plugging in the risk premium derived above.

Likewise, the per-unit-of-specialist-wealth fee can be derived as follows:

qt ≡
Kt

Wt
=

mktεt
Wt

=
mkt
γ

βtPt

Wt
=

m

1 +m

Pt/Dt

xt
kt. (85)
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Finally, we can summarize

qUt = 0 and qt =
σ2m

(mρh + ρ)
2
x2t

(
γ − ρhγhmxt

1− ρxt

)
. (86)

Solving for the risk free rate. From the household’s Euler equation, we have

rt = ρh −
L
[
u′
(
Ch
t

)]
u′
(
Ch
t

) = ρh −
L
[(
W h

t

)−1
]

(
W h

t

)−1 , (87)

where

L
[
(W h

t )
−1

]
= L

[
(Pt −Wt)

−1
]
= −(Pt −Wt)

−2E [d(Pt −Wt)] + (Pt −Wt)
−3E

[
d2(Pt −Wt)

]
.

From Equations (37) and (38), we have Pt−Wt =
Dt

ρh
− ρ

ρh
Wt, which leads to d (Pt −Wt) =

dDt−ρdWt

ρh
.

Combining with (76) and (77), we have:

d (Pt −Wt) =
(ĝst dt+ σẐs

D,t)Dt

ρh
− ρ

ρh

[(
εtπR,t

Wt
+ qt + rt − ρ

)
Wtdt+ σR,tεtdẐ

s
D,t

]
=

[
1

ρh
ĝstDt −

ρ

ρh

(
εtπR,t

Wt
+ qt − ρ+ rt

)
Wt

]
dt+

(
σ

ρh
Dt −

ρ

ρh
σR,tεt

)
dẐs

D,t.

This gives

L
[(
W h

t

)−1
]

(
W h

t

)−1 =
L
[
(Pt −Wt)

−1
]

(Pt −Wt)
−1 =

− 1
ρh
ĝstDt +

ρ
ρh

(
εtπR,t

Wt
+ qt − ρ+ rt

)
Wt

Pt −Wt
+

(
σ
ρh
Dt − ρ

ρh
σR,tεt

)2

(Pt −Wt)
2 .

Therefore, the risk-free rate is given by:

rt = ĝst + ρh − ρ∆ρxt − ρqtxt −
ρxt

(
[
πR,t

γσR,t
]2 − 2σ

πR,t

γσR,t

)
+ σ2

1− ρxt
. (88)

Using the expressions for πR,t/σR,t and qt in the constrained and unconstrained regions by Equations

(47) and (84), we obtain the risk free interest rate in the main text.

5.5 Solving the Stochastic Process of Aggregate State

In order to derive the unconditional mean and variance of risk premium and interest rate, we need

to know the distribution of the state variable, xt = Wt/Dt. Using Ito’s formula, we have

dxt
xt

=
dWt

Wt
− dDt

Dt
− dDt

Dt

dWt

Wt
+

(
dDt

Dt

)2

.
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Substituting the dividend process (76) and specialist’s wealth process (77) into the above equation

and matching the drift and diffusion coefficients of the aggregate state process, µx,t and σx,t, we

get:

µx,t = σ2 − ρ+ qt + rt − ĝst +
1

γ2
π2
R,t

σ2
R,t

− σ

γ

πR,t

σR,t
,

= σ2 + (1− ρxt) (∆ρ+ qt) +

(
πR,t

γσR,t

)2
(1− 2ρxt) + (3ρxt − 1)σ

(
πR,t

γσR,t

)
− σ2

1− ρxt
,

σx,t =
πR,t

γσR,t
− σ.

Putting the expressions of qt, πR,t/σR,t and rt from Equations (86), (47) and (49) back, we could

obtain the scaled wealth process in the main text, where in the unconstrained region,

µU
x,t = ∆ρ (1− ρxt) + σ2 + σ2 AU

0 x
2
t +AU

1 xt +AU
2

(1− ρxt) [ρ (γh − γ)xt + γ]
2 , (89)

σU
x,t = σ

[
γh

ρ (γh − γ)xt + γ
− 1

]
, (90)

where AU
0 = ρ2

(
γh − γ

) (
2γh + γ

)
, AU

1 = ρ
(
2γ2 − 3

(
γh

)2
+ 2γγh

)
, and AU

2 =
(
γh

)2 − γ2 − γγh.

In the constrained region they are given by

µx,t = ∆ρ (1− ρxt) + σ2 + σ2 A0x
2
t +A1xt +A2

(mρh + ρ)
2
(1− ρxt)x2t

, (91)

σx,t = σ

[
1

(mρh + ρ)xt
− 1

]
, (92)

where A0 = ρh
(
ργh − ρh

)
m2 + ρ

(
ργ + ρh

)
m + 2ρ2, A1 = −ρhγhm2 −

(
ρh + 2ργ

)
m − 3ρ, and

A2 = γm+ 1.

5.6 Existence of Stationary Distribution

By integrating the steady state KFP equation twice on both sides of xc, we obtain the general

solution (Karlin and Taylor (1981), pg. 221):

f(x) =

{
C1

[
1

s(x)σ2
X(x)

]
+ C3

[
S(x)

s(x)σ2
X(x)

]}
· 1(x ≤ xc)

+

{
C2

[
1

s(x)σ2
X(x)

]
+ C4

[
S(x)

s(x)σ2
X(x)

]}
· 1(x ≥ xc), (93)
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where s (x) = exp
{
−
∫ x

[
2µX(v)
σ2
X(v)

]
dv

}
and S(x) =

∫ x
s(v)dv is the scale function.19 To deter-

mine the constants of integration and derive necessary and sufficient existence conditions, we must

examine the properties of 2µX(v)/σ2
X(v) at the two boundaries. Let’s first consider the right

(unconstrained) boundary, where x = 1/ρ. From Appendix 5.5 we have:

µU
X(xt) =

[
∆ρ(1− ρxt) + σ2 + σ2 AU

0 x
2
t +AU

1 xt +AU
2

γ2(1− ρxt)(1− ρHxt)2

]
xt, (94)

σU
X(xt) = −σH

(
1− ρxt
1− ρHxt

)
xt, (95)

where H = 1 − γh

γ and theAU
j coefficients are given in Appendix 5.5. It is immediately clear that

(σU
X(1/ρ))2 = 0, and µU

X(1/ρ) = σ2(1 + 0/0)/ρ contains 0/0. By applying L’Hopital’s rule, we get:

lim
x→1/ρ

AU
0 x

2
t +AU

1 xt +AU
2

γ2(1− ρxt)(1− ρHxt)2
=

2AU
0 xt +AU

1

−ργh2
= −1,

which gives µU
X(1/ρ) = 0 as well. Hence, to evaluate limx→1/ρ µ

U
X(x)/(σU

X(x))2, we first simplify

the expression:

µU
X (xt)(

σU
X (xt)

)2 =

[
1 + ∆ρ

σ2 (1− ρxt)
]
γ2 (1− ρHxt)

2 (1− ρxt) +AU
0 x

2
t +AU

1 xt +AU
2

γ2H2 (1− ρxt)
3 .

It turns out that µU
x (1/ρ)

(σU
x (1/ρ))2

is 0/0 as well, so we must apply L’Hopital’s rule again to both the

numerator and denominator, which yields:

[num]′ = 2AU
0 xt +AU

1 − γ2ρ (1− ρHxt)

[
H

(
2
∆ρ

σ2
(1− ρxt) (1− 2ρxt)− 3ρxt + 2

)
− 2ρ

∆ρ

σ2
xt + 2

∆ρ

σ2
+ 1

]
[den]′ = −3γ2H2 (1− ρxt)

2 x+ γ2H2(1− ρx)3.

Clearly, at the right boundary,

[num(1/ρ)]′ =
2

ρ
AU

0 +AU
1 − ργ2 (1−H)2 = 0

[den (1/ρ)]′ = 0.

Taking second derivatives of the numerator and denominator,

[num]′′ = 2

[
AU

0 + γ2ρ2
[
H

[
H

(
−6ρ

∆ρ

σ2
xt (1− ρxt) +

∆ρ

σ2
− 3ρxt + 1

)
− 6ρ

∆ρ

σ2
xt + 4

∆ρ

σ2
+ 2

]
+

∆ρ

σ2

]]
[den]′′ = 6γ2H2ρ (1− ρxt)x− 3γ2H2(1− ρx)2 − 3γ2H2(1− ρx)2ρ,

19As noted by Karlin and Taylor (1981, p. 195), the lower limits of integration in these expressions are unimportant
as long as they lie within the support of the distribution.
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we find:

[num(1/ρ)]′′ =
2ρ2

σ2
(γh2∆ρ+ γγhσ2 − γ2σ2) (96)

[den(1/ρ)]′′ = 0. (97)

Since we need limx→1/ρ
2µU

x (xt)

σU
x (xt)

2 < 0, we need [num(1/ρ)]′′ to be negative. Hence, if the sec-

ond restriction (ii) given in Proposition 3 is satisfied, µU
x (1/ρ)/(σ

U
x (1/ρ))

2 = −∞. Otherwise,

µU
x (1/ρ)/(σ

U
x (1/ρ))

2 = ∞. From Karlin and Taylor (1981), the nature of the boundary depends on

the scale function S(1/ρ) and the ‘speed function’ M(1/ρ), where

M(x) =

∫ x 1

(σU
X(v))2

exp

{∫ v 2µU
X(u)

(σU
X(u))2

du

}
dv.

It is apparent that if the restriction in Proposition 3 is violated, then S < ∞ and M = ∞. In this

case, x = 1/ρ is a ‘regular’ (absorbing) boundary, and a non-degenerate distribution fails to exist.

However, if the restriction is satisfied, then S = ∞ and N < ∞, where

N(1/ρ) =

∫ 1/ρ

x
S[x, v]dM(v).

Hence, from Karlin and Taylor (1981, pgs. 234-36), x = 1/ρ is an ‘entrance’ boundary, which is

unattainable in finite mean-time. Finally, since S(1/ρ) = ∞, it is clear that for the density to

remain bounded we must have C4 = 0 for x ≥ xc.

Let’s now turn to the left (constrained) boundary. This occurs when x = 1/(ρ+mρh). Referring

to Appendix 5.5 we have

µX (xt) =

[
∆ρ (1− ρxt) + σ2 + σ2 A0x

2
t +A1xt +A2

(mρh + ρ)
2
(1− ρxt)x2t

]
xt, (98)

σX (xt) = σ

[
1

(mρh + ρ)xt
− 1

]
xt. (99)

The lower boundary of x is 1/(ρ+mρh) instead of 0 because at this point σX = 0, and x can never

move below the lower bound. One can readily verify, using the expressions for the constrained Ai

coefficients given in Appendix 5.5, that if the first restriction (i) given in Proposition 3 is satisfied,

then µX > 0 at the left-boundary. As a result, once again we have S = ∞ and N < ∞ at the

left-boundary. Again from Karlin and Taylor (1981), this implies the left-boundary is an entrance

boundary. Finally, since S = ∞ at the left-boundary, we must set C3 = 0 for x ≤ xc.

5.7 Indirect Inference

The distance is measured by the quadratic form

GT (Ψ) = GT (Ψ)′ΩTGT (Ψ), θ1 = θh1 and ρ < ρh,
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where Ψ =
[
ρ ρh θ1 σ

]′
is a 4 × 1 vector. GT (Ψ) is the moment condition involving the data and

parameters. We use T = 10, 000 to calculate the sample averages. ΩT is an 10× 10 symmetric and

positive definite weighting matrix,

ΩT =


1
λ2
1

0 0 0

0 1
λ2
2

0 0

0 0
. . . 0

0 0 0 1
λ2
10

 .

The sample moment conditions are defined as follows: GiT (Ψ) =
(
λ̂i − λi

)
, i = 1, . . . , 10, where

λ1 = AR(1) coefficient of equity premium, λ2 = AR(1) intercept of equity premium, λ3 = AR(1)

coefficient of price/dividend ratio, λ4 = AR(1) intercept of price/dividend ratio, λ5 = mean equity

premium, λ6 = mean risk free rate, λ7 = mean price/dividend ratio, λ8 = price/dividend ratio

volatility, λ9 = mean return volatility, and λ10 = probability that the constraint binds (the crisis

happens). πτ is the time series of equity premium with τ = 2, 400 (200 years). �̂ denotes the model

estimated corresponding values.

We set the priors of the parameters as follows: ρ ∈ [.005, .03], ρh ∈ [.005, .03], θ1 ∈ [.01, .1],

and σ ∈ [.1, .25]. Finally, we use indirect inference to obtain the estimated parameters Ψ̂GMM =

argmin
Ψ

{GT (Ψ)′ΩTGT (Ψ)}.

5.8 Detection Error Probability

Both specialists and households seek robust decision rules against different models and different

states. As a result, perturbations about the distribution of shocks to dividends capture the robust

control preference; and perturbations about the distribution of hidden state capture the robust

filtering preference. The null/approximating models under two types of ambiguity are therefore:

dDt

Dt
= ĝitdt+ σdZ̃i

D,t, (100)

dĝit = ρg
(
ḡ − ĝit

)
dt+

Qi

σ
dZ̃i

g,t +
√
2κiQidẐi

s,t, (101)

where Z̃i
D,t and Z̃i

g,t are i.i.d under model P. The alternative/distorted models are:

dDt

Dt
=

[
ĝit + σνi(xt)

]
dt+ σdŽi

D,t, (102)

dĝit =

[
ρg

(
ḡ − ĝit

)
+

Qi

σ
ωi

]
dt+

Qi

σ
dŽi

g,t +
√

2κiQidẐi
s,t, (103)

where Ži
D,t and Ži

g,t are i.i.d. model Q.

Let LP and LQ be the likelihood of the null model and the alternative model, respectively. The

log-likelihood ratio is defined as l = log
(

LP
LQ

)
. When the null/approximating model P generates
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the data, the log-likelihood ratios for specialists and households are as follows:

(l|P)s =
1

2

∫ T

0

(
ws′
t w

s
t

)
dt−

∫ T

0
ws′
t dϵ

s
t , (104)

(l|P)h =
1

2

∫ T

0

(
wh′
t wh

t

)
dt−

∫ T

0
wh′
t dϵht (105)

where ws
t =

[
νst

ωs

]
, wh

t =

[
νht

ωh

]
, ϵst =

[
Z̃s
D,t

Z̃s
g,t

]
, and ϵht =

[
Z̃h
D,t

Z̃h
g,t

]
. Note that νi (xt) is a

function of xt, where dxt = µx,txtdt + σx,txtdZ̃
i
D,t, while ωi is a constant. We provide the closed-

form solution for νi (xt) below, and ωi is provided in Lemma 1.

If the alternative/distorted model Q is the actual data-generating process, we have:

(l|Q)s = −1

2

∫ T

0

(
ws′
t w

s
t

)
dt−

∫ T

0
ws′
t dϵ

s
t , (106)

(l|Q)h = −1

2

∫ T

0

(
wh′
t wh

t

)
dt−

∫ T

0
wh′
t dϵht . (107)

where ws
t =

[
νst

ωs

]
, wh

t =

[
νht

ωh

]
, ϵst =

[
Žs
D,t

Žs
g,t

]
, and ϵht =

[
Žh
D,t

Žh
g,t

]
. Under model Q, the

evolution of xt is governed by dxt =
[
µx,txt + σx,txtν

i
t (xt)

]
dt+ σx,txtdŽ

i
D,t.

Finally, the detection error probability is defined as

DEPs =
1

2
Prob ((l|P)s < 0) +

1

2
Prob ((l|Q)s > 0) , (108)

DEPh =
1

2
Prob

(
(l|P)h < 0

)
+

1

2
Prob

(
(l|Q)h > 0

)
. (109)

We now derive the closed-form solution for νi (xt). Based on Lemma 1, the relative entropy

from the robust control problems of the household and the specialist can be formulated as follows:

νht = −
θh1σR,tε

h
t

ρhW h
t

= − θh1
ρhγh

πR,t − kt
σR,t

=
1− γh

γh

(
πR,t

σR,t
− kt

σR,t

)
, (110)

νst = −
θ1σR,tεt
ρWt

= − θ1
ργ

πR,t

σR,t
=

1− γ

γ

πR,t

σR,t
. (111)

Substituting the optimal solutions for
πR,t

σR,t
, kt, and σR,t derived in Equations (47), (45) and (84),

we obtain the following expressions:

(
νht

)U
=

σγ
(
1− γh

)
ρ (γh − γ)xt + γ

, and νht =
σ
(
1− γh

)
mρh

(mρh + ρ) (1− ρxt)
, (112)

(νst )
U =

σγh (1− γ)

ρ (γh − γ)xt + γ
, and νst =

σ (1− γ)

(mρh + ρ)xt
. (113)

for the unconstrained case and constrained cases, respectively.
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Kaniel, Ron, and Péter Kondor, 2013, The Delegated Lucas Tree, The Review of Financial Studies 26,

929–984.

Karlin, Samuel, and Howard M. Taylor, 1981, A Second Course in Stochastic Processes vol. 25. (Academic

Press Philadelphia).

Klibanoff, Peter, Massimo Marinacci, and Sujoy Mukerji, 2005, A Smooth Model of Decision Making under

Ambiguity, Econometrica 73, 1849–1892.

Krishnamurthy, Arvind, and Wenhao Li, 2021, Dissecting Mechanisms of Financial Crises: Intermediation

and Sentiment, Unpublished Working Paper.

Lewellen, Jonathan, 2011, Institutional Investors and the Limits of Arbitrage, Journal of Financial Eco-

nomics 102, 62–80.

Li, Wenhao, 2023, Public Liquidity and Financial Crises, American Economic Journal: Macroeconomics,

Forthcoming.

Liptser, Robert S, and Albert N Shiryaev, 2001, Statistics of Random Processes II: Applications vol. 6.

(Springer Berlin) 2nd edn.

Lucas, Robert E, 1978, Asset Prices in an Exchange Economy, Econometrica pp. 1429–1445.

Luo, Yulei, 2010, Rational Inattention, Long-run Consumption Risk, and Portfolio Choice, Review of Eco-

nomic dynamics 13, 843–860.

Luo, Yulei, 2017, Robustly Strategic Consumption-Portfolio Rules with Informational Frictions, Management

Science 63, 4158–4174.

Luo, Yulei, and Eric R Young, 2016, Induced Uncertainty, Market Price of Risk, and the Dynamics of

Consumption and Wealth, Journal of Economic Theory 163, 1–41.

Maenhout, Pascal J., 2004, Robust Portfolio Rules and Asset Pricing, The Review of Financial Studies 17,

951–983.

Maenhout, Pascal J, Andrea Vedolin, and Hao Xing, 2021, Robustness and Dynamic Sentiment, Unpublished

Working Paper.

Miao, Jianjun, and Alejandro Rivera, 2016, Robust Contracts in Continuous Time, Econometrica 84, 1405–

1440.

Nakamura, Emi, Jón Steinsson, Robert Barro, and José Ursúa, 2013, Crises and Recoveries in an Empirical
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