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Abstract

In reality, investors are uncertain about the dynamics of the risky asset returns (e.g., the expected returns and

the correlation between the returns of two risky assets). Consequently, investors make robust investment decisions

with special concerns on the expected returns and correlations. In this paper, we propose a hierarchical rule for

robust investment between two risky assets: select the relatively safe asset first and then decide how much to invest

in the relatively risky asset to hedge the ambiguity embedded in the relatively safe asset. After introducing criteria

for relative riskiness and cross-hedging for investors with a constant relative risk averse (CRRA) utility, we find

that a typical investor would equally invest in the two risky assets regardless of their correlation when they are

indistinguishable from the riskiness perspective. Furthermore, the investor will take a long or short position on the

relatively risky asset if it can work as the cross-hedging instrument due to their correlation; otherwise, it will not

be traded at all. These results provide a unified explanation for the observed “under-diversification”, “home bias”,

and “portfolio inertia” in financial markets from the cross-hedging point of view.
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1 Introduction

Model-based portfolio choice relies heavily on the estimation of model parameters from the historical data of risky

assets such as expected returns, volatility, jump components, and correlations between risk factors. The fitted model

is then used to characterize the prices and returns of the risky assets. However, investors may be confronted with

ambiguity about the dynamics of prices and returns as well as estimation risk. Ambiguity-averse investors will corre-

spondingly take robust strategies. We investigate the optimal portfolio choice of two risky assets when the expected

returns and correlation of the two risky assets are uncertain. We focus on the uncertainty about expected returns and

correlation because it is well-known that they are difficult to estimate. In addition, we explore the two-asset case to

obtain the explicit solution for optimal investment strategies.

Portfolio choice among risky assets is not only a very realistic setting for fund management but also an important

issue from a macroeconomic perspective. For example, most equity funds are required to be fully invested in risky

assets (Michaud and Michaud, 2008). Many economists also argue that the global economy could be faced with a

shortage of safe assets. For example, during the 2007-2009 financial crisis, many of the private safe assets–perceived

as safe because they were bestowed with a AAA rating– lost their quality and then disappeared.1 As a result, the strains

associated with the financial crisis quickly lead to concern about the safety of sovereign debts, which leads to a further

shrinkage in the global supply of safe assets. It is a generalization of the setting with a risk-free asset in the sense

that it can be reduced to the latter case by assigning zero-volatility to one of the risky assets. However, the absence

of the risk-free asset may affect the performance of some portfolio rules designed for the investment setting with the

risk-free asset. For example, the 1/N rule can outperform various sophisticated optimal portfolio rules (DeMiguel,

Garlappi, and Uppal, 2009). This shocking result can be turned over when a portfolio rule is designed for a set of risky

assets (Kan, Wang, and Zhou, 2020), implying that an optimal portfolio over risky assets is not a trivial generalization

of an optimal portfolio with a risk-free asset. From the theoretical point of view, ambiguity is omnipresent within the

price dynamics of the risky assets since no one knows the exact evolution of the financial markets. Existing literature

has investigated the effect of ambiguity on optimal asset allocation when one cannot accurately estimate one of the

model parameters such as the expected return, volatility, or correlation (e.g. Chan, Karceski, and Lakonishok, 1999;

Jagannathan and Ma, 2003; Garlappi, Uppal, and Wang, 2007; Epstein and Ji, 2013; Epstein and Halevy, 2019). Note

that uncertainty on any one of the model parameters cannot fully capture the ambiguous dynamics of the risky assets.

A natural question is what is the robust investment strategy if a fund manager has ambiguity on the driving force of

randomness behind the risky assets. We propose a modeling framework to investigate this question, and provide more

testable implications for robust investments.

Ambiguity on the price dynamics of risky assets is different from parameter uncertainty due to estimation error.

Parameter uncertainty is referred to as the case when an investor knows the true model for the asset price while its

parameters cannot be precisely estimated. This setting is formulated with stochastic models defined on a probabil-

ity space equipped with a unique probability measure, meaning that the investor has complete confidence about the

fundamental uncertainty behind the financial market. Aside from parameter uncertainty within such a probability

framework, we consider ambiguity on the driving force of randomness behind the price dynamics of risky assets (see
1During 2002-2007, the US and European financial markets created large amounts of private safe assets through the securitization of riskier

assets.
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Hansen and Sargent, 2015; Epstein and Ji, 2021; Luo, Nie, and Wang, 2021, for discussions on the interactions of

model uncertainty and parameter uncertainty). In this paper, we characterize an investor’s ambiguity on the driving

force of market randomness by a setP of probability measures defined on the canonical space Ω , the set of continuous

functions representing the driving force of the market ambiguity. This set P of probability measures is selected such

that the expected returns of risky assets and their correlations are in some intervals, respectively. In our framework,

these quantities can be time-varying or random processes with bounded values. This construction method simulta-

neously accounts for the ambiguity induced by the expected returns and the correlation among risk factors, which is

distinctive from the ambiguity induced by one of the risk factors or model parameters (e.g., Chen and Epstein, 2002;

Hansen and Sargent, 2008; Liu, 2011; Epstein and Ji, 2013; Luo, 2017; Attaoui, Cao, Duan, and Liu, 2021; Lin and

Riedel, 2021).

Portfolio choice can be regarded as selecting some “good” assets among risky assets. The criterion for “good”

assets can be up to the preference of investors. Let (µ1, σ1) (respectively, (µ2, σ2)) be the expected return and volatility

of the first (respectively, second) risky asset. We propose a criterion of the relative riskiness is

R(µ1, σ1, µ2, σ2) =
µ1 − µ2

σ2
1 − σ2

2

, σ1 6= σ2 .

We show that an investor would first choose a relatively safe asset among the risky assets by using such criterion,

and then consider if it is necessary to cross-hedge the ambiguity embedded in the relatively safe asset by trading the

relatively risky asset. The threshold for cross-hedging is analytically derived for an investor with a CRRA utility,

which leads to the conditions for trading. The cross-hedging criterion is

H(µ1, σ1, µ2, σ2) =
σ2

σ1
+
µ1 − µ2

κσ1σ2
, σ1 6= 0, σ2 6= 0,

where κ governs the degree of risk aversion of an investor in the CRRA utility. This criterion allows an investor to

judge whether or not to invest in the relatively risky asset.

In our model, we suppose that the individual takes a stand only on bounds of returns and their correlation of the

two risky assets. For any given σ1 > 0 and σ2 > 0, let σ1 and σ2 be the standard deviations (volatility) of two

risky assets, respectively. The return process µ = (µ1, µ2) of two risky assets takes value in a convex compact set

[µ
1
, µ1]× [µ

2
, µ2] (µi and µ

i
are constants, and µi > µ

i
≥ 0, i = 1, 2), and their correlation ρ takes value in [ρ, ρ] (ρ

and ρ are constants, and −1 ≤ ρ ≤ ρ ≤ 1). Using the above criterion, we obtain the following results.2

(1) If R(µ
1
, σ1, µ2

, σ2) = κ/2, the risky assets are indistinguishable from the riskiness perspective in the presence

of the ambiguity about the expected returns and correlation. An ambiguity-averse investor will invest an equal

fraction of her wealth in these two risky assets, regardless of their correlation.

(2) The cross-hedging effect can provide a unified mechanism for explaining “under-diversification”, “home bias”,

and “portfolio inertia”, which are widely documented with the empirical evidence.

(a) In the case that the second risky asset is the relatively safe asset, an investor will buy a proportion of the first

risky asset to hedge the ambiguity associated with the second risky asset if ρ < H(µ
1
, σ1, µ2

, σ2). Moreover,

if H(µ1, σ1, µ2
, σ2) < ρ, the investor will short the first risky asset. Otherwise, the investor has no hedging

2To the best of our knowledge, these results are new in the literature.

3



demand for ambiguity embedded in the relatively safe asset. That is, the investor will not trade the relatively

risky asset at all, which thus has the potential to generate the phenomenon of limited participation, under-

diversification, and home bias we observe in the data. The previous rationale holds in the case that the first

risky asset is the relatively safe asset.

(b) The investor may not trade the relatively risky asset for various combinations of the values of the expected

return and correlation. This phenomenon is used to be regarded as portfolio inertia, which has been used to

account for markets freezing up in response to an increase in uncertainty.

This paper contributes to the literature on robust portfolio choice in three folds. First, we provide a unified

mechanism for explaining “under-diversification”, “home bias”, and “portfolio inertia” from the cross-hedging point

of view. In the literature, “under-diversification” is referred to as a bias in individual assets or non-participation in

risky assets, “home bias” is the term given to describe the fact that individuals and institutions in most countries hold

only modest amounts of foreign equity, and “portfolio inertia” refers to the observation that the list of risky assets

or their holdings in the optimal portfolio do not change when the Sharpe ratio of risky assets change. Only when

a risky asset can be used to work as a cross-hedging instrument for the existing portfolio, will it be traded by an

ambiguity-averse investor. This rationale highlights the effect of both the expected return and correlation between

the risky assets in the robust portfolio choice problem. Second, a criterion for the relatively safe asset and a criterion

for the cross-hedging demand are proposed to hierarchically construct a robust portfolio. The first stage is to find

the relatively safe assets while the second stage is to cross-hedge the ambiguity with the other relatively risky assets.

Third, we propose “1/2” as a rule-of-thumb for investment between two risky assets when they are indistinguishable

from the riskiness perspective for an investor in the worst-case scenario, regardless of their correlations.

Related Literature This paper is related to the literature on robust portfolio choice in absence of a risk-free

asset. Robust portfolio choice with parameter uncertainty has been extensively investigated in the existing literature.

“Under-diversification”, “portfolio inertia”, and “home bias” are stylized empirical facts in portfolio research (see,

e.g., Cooper and Kaplanis, 1994; Mitton and Vorkink, 2007; Calvet, Campbell, and Sodini, 2007; Van Nieuwerburgh

and Veldkamp, 2010; Boyle, Garlappi, Uppal, and Wang, 2012; Guidolin and Liu, 2016). These facts can arise from

ambiguity on one of the model parameters such as the expected return or correlation (see, e.g., Uppal and Wang, 2003;

Illeditsch, 2011; Pham, Wei, and Zhou, 2021; Jiang, Liu, Tian, and Zeng, 2020; Lin, Sun, and Zhou, 2020; Illeditsch,

Ganguli, and Condie, 2021). In a static framework for a correlation ambiguity, Jiang, Liu, Tian, and Zeng (2020)

show that an ambiguity-averse investor will exclude one of each pair of assets with a significant point estimation of

correlation when they have similar risk-return characteristics. Pham, Wei, and Zhou (2021) provide a justification

for under-diversification due to ambiguity on expected returns and correlation in a mean-variance framework. Our

continuous-time framework allows us to investigate a fundamental rationale behind these stylized facts from the

hedging demand point of view and hierarchical method for portfolio selection.

Portfolio choice in the absence of a risk-free asset affects the performance of portfolio rule (see, e.g., Chiu and

Zhou, 2011; Zeng, Li, Li, and Yao, 2016; Lam, Xu, and Yin, 2019; Kan, Wang, and Zhou, 2020). Taking estimation

risk into account, Kan, Wang, and Zhou (2020) propose an optimal combining strategy for one-period portfolio

choice, which could outperform the 1/N rule. Our results coincide with this statement in the sense that it is optimal

for an investor to invest equally in the risky assets for the specific market environment. In the continuous-time mean-
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variance framework, Chiu and Zhou (2011) and Zeng, Li, Li, and Yao (2016) highlight that the efficient frontiers in

continuous-time portfolio without a risk-free asset are different from that in the one-period setting. Lam, Xu, and Yin

(2019) show that the optimal allocation without a risk-free asset depends linearly on the current wealth while the case

with a risk-free asset turns out to be independent of current wealth. The aforementioned papers on portfolio choice

without a risk-free asset all take the mean-variance criterion as the objective of the portfolio optimization problem.

In contrast, we work with a CRRA preference and investigate how ambiguity on the expected returns and correlation

affects the robust investment strategies.

The remainder of this paper is organized as follows. Section 2 investigates the portfolio choice with two risky

assets in the absence of ambiguity, focusing on the effect of the correlation between two risky assets. In Section 3, we

introduce the model setup for ambiguous dynamics of the risky assets in terms of the expected returns and correlation.

The robust strategy is analyzed in detail, which sheds light on the mechanism of some stylized facts from a new point

of view. Section 4 provides quantitative analysis on the robust strategies and discusses the economic implications.

Section 5 concludes. Proofs are given in the appendix.

2 Investment without Ambiguity

In this section, we consider optimal investment with two risky assets in the absence of ambiguity. The optimal

portfolio would shed some light on the robust portfolio when an ambiguity-averse investor is confronted with the

ambiguous dynamics of the risky assets.

The dynamics of price processes of two risky assets follows: dS1,t = µ1S1,tdt+ σ1S1,tdW1,t,

dS2,t = µ2S2,tdt+ σ2S2,t(ρdW1,t +
√

1− ρ2dW2,t),
(1)

where µ1, µ2, σ1 > σ2 ≥ 0 are constants, ρ ∈ [−1, 1] is the correlation between these two risky assets, W =

(W1,W2) is a two dimensional Brownian motions on some probability space (Ω,F,P), W1 and W2 are independent,

and F = (Ft)t∈[0,T ] is the filtration generated by W up to a given time horizon T .

The investor is assumed to invest a proportion πt of her wealth on the first risky asset at time t. The wealth

dynamics Xπ follows:

dXπ
t = Xπ

t

[
πtµ1 + (1− πt)µ2

]
dt+Xπ

t

[
πtσ1 + (1− π)ρσ2

]
dW1,t + (1− πt)

√
1− ρ2σ2X

π
t dW2,t,

with the initial wealth Xπ
0 = x0. We call π a portfolio strategy if π is adapted to the filtration F and E

[∫ T
0 |πt|

2dt
]

is finite. The portfolio strategy π is admissible if Xt ≥ 0, t ∈ [0, T ]. We denote by Π1 the set of admissible portfolio

strategies.

The investor maximizes her utility at a fixed investment horizon [0, T ],

V (x0) = sup
π∈Π1

E [u (T,Xπ
T )] ,

where u is a CRRA utility, i.e.,

u(T, x) =
Kx1−κ

1− κ
, (2)

K > 0, κ > 0, and κ 6= 1.
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Figure 1: Investment between a risky asset and a risk-free asset

Proposition 2.1. If an investor with the CRRA utility given by (2), then the optimal investment strategy π̃ is

π̃t =
σ2

2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
+

µ1 − µ2

κ(σ2
1 + σ2

2 − 2ρσ1σ2)
, t ∈ [0, T ] . (3)

Note that if there exists a risk-free asset, the investment strategy can be induced under the assumption that σ2 = 0

and the proportion invested in the risky asset is just (µ1 − µ2) /
(
κσ2

1

)
. In this setting, the typical investor invests a

fixed fraction of her wealth in the risky asset, as illustrated in Figure 1. Only if the expected return of the risky asset

is higher than the risk-free rate, will the investor invest a positive fraction of wealth in the risky asset. For an investor

with a much lower degree of risk aversion, she will short the risk-free asset to buy the risky asset (π̃ > 1). That is, a

risk-averse investor will never short the risky asset (π̃ > 0) unless its expected return is smaller than the risk-free rate.

This is not the case if only risky assets are available in the market. The expected return is not the only criterion to

assess if the risky asset should be shorted in this setting. For example, an investor may not trade (π̃ = 0) or even short

a risky asset (π̃ < 0), although its expected return rate is higher than the other one, as illustrated in Figure 2. The

investor’s preference and the dynamics of the risky assets jointly determine which asset should be shorted. Note that

the investment strategy is sensitive to their correlation in the sense that any change in the correlation will lead to an

adjustment of the trading position on each risky asset. Any derivation from the correlation coefficient corresponding

to π̃ = 0 drives the investor to optimally change her position away from zero. This will not be the case in the presence

of ambiguity about the driving force of the risky assets, as shown in the following sections.

3 Robust Investment Strategies with Ambiguity

In this section, we consider the investment decision with two risky assets when an ambiguity-averse investor is am-

biguous about the dynamics of these risky assets in terms of the expected returns and their correlation. For simplicity,

we assume that investors have a precise estimate of the variance of the asset returns. This assumption can be justified
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Figure 2: Investment between two risky assets

by both the analytical tractability and the empirical evidence on the predictability of the volatility of asset returns and

the difficulties in estimating precisely the expected asset returns and the correlations between them. The investor’s

ambiguity will be characterized by a set of probability measures on the state space. This formulation allows the

expected returns and their correlation to be general time-varying processes rather than constants.

3.1 Model setup

Our model is based on the model proposed in Epstein and Ji (2013). Specifically, we consider a financial market with

two tradable risky assets within a fixed investment horizon [0, T ]. Let C([0, T ],R2+) be the set of all continuous

paths with positive values in R2 over the finite time horizon [0, T ] endowed with the sup norm. Their price processes

S = (S1,t, S2,t)0≤t≤T are modeled by the canonical state space Ω, with

Ω =
{
ω = (ω(t))t∈[0,T ] ∈ C([0, T ],R2+) : ω(0) = S0

}
,

where S0 = (S1,0, S2,0) denotes the initial prices of the risky assets, and St(ω) = ωt. We equip Ω with the uniform

norm and the corresponding Borel σ-field F , and denote by F = (Ft)t∈[0,T ]) the natural (raw) filtration generated by

S.

A probability measure P is used to capture the randomness of the risky asset price. Given such a probability

measure, one actually knows the price distributions or the dynamics of the risky assets. However, the complexity of

the financial market confronts individual investors with ambiguity about these probabilistic characteristics. That is,

we cannot assign a unique probability measure on Ω to understand the complex financial market. A set of probability

measures will be assigned on Ω rather than a unique one. Such a set of probability measures actually characterizes

investors’ ambiguity.

For any given σ1 > 0 and σ2 > 0, let σ1 and σ2 be the standard deviations (volatility) of two risky assets,

respectively. We construct the set of probability measures such that the mean returns µ = (µ1, µ2) of the risky
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assets taking value in a convex compact set Λ ⊂ R2
+, and their correlation ρ ∈ [ρ, ρ] ⊂ [−1, 1]. In particular, for

µi > µ
i
≥ 0, i = 1, 2, we define Λ = [µ

1
, µ1]× [µ

2
, µ2], and Θ = Λ× [ρ, ρ]. We characterize such ambiguity by ΓΘ,

which is defined as

ΓΘ =
{
θ = (µ1, µ2, ρ) | ρ ∈ [ρ, ρ] and µ = (µ1,t, µ2,t)t∈[0,T ] ∈ Λ are F-progressively measurable processes

}
.

For θ ∈ ΓΘ, let (Ω,F,Pθ) be a filtered probability space such that S is the unique solution of the following stochastic

differential equations (SDEs): dS1,t = µ1,tS1,tdt+ σ1S1,tdW
θ
1,t,

dS2,t = µ2,tS2,tdt+ σ2S2,t(ρtdW
θ
1,t +

√
1− ρ2

tdW
θ
2,t),

(4)

where W θ
1 = (W θ

1,t)0≤t≤T and W θ
2 = (W θ

2,t)0≤t≤T are two independent Brownian motions defined on (Ω,F,Pθ) .

We denote by PΘ the set of probabilities {Pθ}θ∈ΓΘ on (Ω,F) such that the SDEs (4) has a unique strong solution.

To interpret such methodology, we define another Brownian motion Ŵ θ
2 = ρW θ

1 +
√

1− ρ2W θ
2 on (Ω,F,Pθ).

The price dynamics of the two risky assets (4) can thus be rewritten as:
dS1,t = S1,t

(
µ1,tdt+ σ1dW

θ
1,t

)
,

dS2,t = S2,t

(
µ2,tdt+ σ2dŴ

θ
2,t

)
,

(5)

where W θ
1 and Ŵ θ

2 are correlated Brownian motions defined on (Ω,F,Pθ) . Such formulation implies that the prices

of the risky assets are driven by two correlated sources of randomness, even though the investor is sure about their

volatilities. For each risky asset, the investor is also ambiguous about its expected return.

We assume that the typical investor is endowed with some initial wealth x0 at time 0 , and allocates her wealth

between the risky assets. For θ ∈ ΓΘ, let πt be the proportion of her wealth invested in the risky asset S1 at time

t ≥ 0 . The investor’s wealth process Xπ follows:

dXπ
t = Xπ

t [πtµ1,t + (1− πt)µ2,t] dt+Xπ
t [πtσ1 + (1− πt)ρtσ2]dW θ

1,t + (1− πt)
√

1− ρ2
tσ2X

π
t dW θ

2,t, (6)

under Pθ, and Xπ
0 = x0. We denote the set of admissible strategies by A(x0), which is defined as follows:

A(x0) =

{
π

∣∣∣∣π is F-adapted,
∫ T

0
π2
rdr <∞, Xπ

t ≥ 0, t ∈ [0, T ], Pθ-a.s., for all Pθ ∈ PΘ

}
.

The objective of an ambiguity-averse investor is to maximize the utility, i.e.,

V (x0) = sup
π∈A(x0)

inf
Pθ∈PΘ

EPθ [u (T,Xπ
T )] , (7)

subject to the wealth dynamics (6), where EPθ denotes the expectation under Pθ ∈ PΘ, and u is the CRRA utility

defined in (2).

3.2 Optimal portfolio strategies

The solution of (7) is the robust investment strategy for an ambiguity-averse investor when only risky assets are

available. It sheds light on how the ambiguity on both the expected returns and correlation affects optimal portfolio

choice.
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Theorem 3.1. (I) If σ2
1 − σ2

2 − (2/κ) (µ
1
− µ

2
) = 0, then the optimal portfolio choice is π̂ = 1/2.

(II) If σ2
1 − σ2

2 − (2/κ) (µ1 − µ2
) > 0, then we have the following results.

(i) If ρ <
σ2

σ1
+
µ

1
− µ

2

κσ1σ2
, then the optimal portfolio choice is

π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

+
µ

1
− µ

2

κ(σ2
1 − 2ρσ1σ2 + σ2

2)
, (8)

and π̂ ∈ (0, 1/2) .

(ii) If ρ ≤ σ2

σ1
+
µ1 − µ2

κσ1σ2
and

σ2

σ1
+
µ

1
− µ

2

κσ1σ2
≤ ρ, then the optimal portfolio choice is π̂ = 0.

(iii) If
σ2

σ1
+
µ1 − µ2

κσ1σ2
< ρ, then the optimal portfolio choice is

π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

+
µ1 − µ2

κ(σ2
1 − 2ρσ1σ2 + σ2

2)
, (9)

and π̂ ∈ (−∞, 0) .

(III) If σ2
1 − σ2

2 − (2/κ) (µ
1
− µ2) ≤ 0, then we have the following results.

(i) If ρ <
σ1

σ2
−
µ

1
− µ

2

κσ1σ2
, then the optimal portfolio choice is

π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

+
µ

1
− µ

2

κ(σ2
1 − 2ρσ1σ2 + σ2

2)
, (10)

and π̂ ∈ (1/2, 1) .

(ii) If ρ ≤ σ1

σ2
−
µ

1
− µ2

κσ1σ2
and

σ1

σ2
−
µ

1
− µ

2

κσ1σ2
≤ ρ, then the optimal portfolio choice is π̂ = 1.

(iii) If
σ1

σ2
−
µ

1
− µ2

κσ1σ2
< ρ, then the optimal portfolio choice is

π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

+
µ

1
− µ2

κ(σ2
1 − 2ρσ1σ2 + σ2

2)
, (11)

and π̂ ∈ (1,+∞).

(IV) If σ2
1 − σ2

2 − (2/κ) (µ
1
− µ

2
) > 0 and σ2

1 − σ2
2 − (2/κ) (µ1 − µ2

) ≤ 0, then we have the following results.

(i) If
σ2

σ1
+
µ

1
− µ

2

κσ1σ2
≤ ρ, then the optimal portfolio choice is π̂ = 0.

(ii) If ρ <
σ2

σ1
+
µ

1
− µ

2

κσ1σ2
, then the optimal portfolio choice is

π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

+
µ

1
− µ

2

κ(σ2
1 − 2ρσ1σ2 + σ2

2)
, (12)

and π̂ ∈ (0, 1/2) .

(V) If σ2
1 − σ2

2 −
2

κ
(µ

1
− µ

2
) < 0 and σ2

1 − σ2
2 −

2

κ
(µ

1
− µ2) > 0, then we have the following results.
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(i) If
σ1

σ2
−
µ

1
− µ

2

κσ1σ2
≤ ρ, then the optimal portfolio choice is π̂ = 1.

(ii) If ρ <
σ1

σ2
−
µ

1
− µ

2

κσ1σ2
, then the optimal portfolio choice is

π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

+
µ

1
− µ

2

κ(σ2
1 − 2ρσ1σ2 + σ2

2)
, (13)

and π̂ ∈ (1/2, 1) .

To interpret the results of Theorem 3.1, we define the relative riskiness of one asset to the other one as:

R(µ1, σ1, µ2, σ2) =
µ1 − µ2

σ2
1 − σ2

2

, σ1 6= σ2, (14)

where (µi, σi) is the return and volatility of the risky asset i. This measure allows an investor to identify the relatively

safe asset between two risky assets. Let us assume that the investor takes asset 1 as the first risky asset and asset 2 as

the second one. Then, the rule to identify the relatively safe asset can be summarized in Table 1. We note that the asset

with a higher volatility may not be relatively risky over the asset with a lower volatility. The relativeness between two

risky assets is also related to an investor’s preference.

Table 1: Rule for the relatively safe asset

RSA σ1 > σ2 σ1 < σ2

S2 R(µ1, σ1, µ2
, σ2) < κ/2 R(µ1, σ1, µ2

, σ2) > κ/2

S1 R(µ
1
, σ1, µ2, σ2) > κ/2 R(µ

1
, σ1, µ2, σ2) < κ/2

S2 R(µ
1
, σ1, µ2

, σ2) < κ/2 ≤ R(µ1, σ1, µ2
, σ2) R(µ1, σ1, µ2

, σ2) ≤ κ/2 < R(µ
1
, σ1, µ2

, σ2)

S1 R(µ
1
, σ1, µ2, σ2) < κ/2 < R(µ

1
, σ1, µ2

, σ2) R(µ
1
, σ1, µ2

, σ2) < κ/2 < R(µ
1
, σ1, µ2, σ2)

Note: 1. RSA is short for relatively safe asset in terms of the measure R defined in (14).

2. S1 and S2 are relatively equal in riskiness if R(µ
1
, σ1, µ2

, σ2) = κ/2.

If R(µ
1
, σ1, µ2

, σ2) = κ/2, the investor will equally invest in the two risky assets, regardless of their correlation

and relative value of volatilities. To the best of our knowledge, this is a novel result in investments. It can work as a

rule of thumb for robust investment if the investor would not differentiate these two risky assets in terms of the worst-

case relative riskiness. Otherwise, the investor will take the relative riskiness and cross-hedging effect into account

when making an optimal portfolio decision.

Note that

σ2
1 − σ2

2 − (2/κ) (µ1 − µ2
) > 0⇔

R(µ1, σ1, µ2
, σ2) < κ/2, if σ1 > σ2,

R(µ1, σ1, µ2
, σ2) > κ/2, if σ2 > σ1.

(15)

This means that the condition of (II) in Theorem 3.1 is equivalent to the right hand of (15). Then, asset 2 will be

considered as the relatively safe asset if R(µ1, σ1, µ2
, σ2) < κ/2, σ1 > σ2 or R(µ1, σ1, µ2

, σ2) > κ/2, σ1 < σ2. In

this case, the investor will invest more in the relatively safe asset but with a conservative belief on its mean return.

That is π ∈ (−∞, 1/2), as indicated by (II) in Theorem 3.1. However, the correlation will affect the investor’s belief

on the expected return (µ1) of the relatively risky asset. Actually, the investor is to hedge the ambiguity associated

with the relatively safe asset by trading the relatively risky asset. The investor will buy a proportion of the relatively

10



risky asset if their correlation is low enough while shorting the relatively risky asset if their correlation is high enough.

The investor has no hedging demand in some cases. More specifically, we define the threshold for crossing hedging

as:

H(µ1, σ1, µ2, σ2) =
σ2

σ1
+
µ1 − µ2

κσ1σ2
, (16)

where (µi, σi) is the return and volatility of the risky asset i. If ρ < H(µ
1
, σ1, µ2

, σ2), the investor will buy a

proportion of the relatively risky asset to hedge the ambiguity associated with the relatively safe asset. Moreover,

if H(µ1, σ1, µ2
, σ2) < ρ, the investor will short the relatively risky asset. Otherwise, the investor has no hedging

demand for ambiguity of the relatively safe asset. Overall, the result of (II) in Theorem 3.1 indicates that the investor

first identifies the relatively safe asset, and then hedges its ambiguity with a cross-hedging strategy.

Note that (III) in Theorem 3.1 is the counterpart of (II) in the setting that asset 1 is relatively safe over asset 2.

The counterpart of (15) is given as follows:

σ2
1 − σ2

2 − (2/κ) (µ
1
− µ2) ≤ 0⇔

R(µ
1
, σ1, µ2, σ2) < κ/2, if σ2 > σ1,

R(µ
1
, σ1, µ2, σ2) > κ/2, if σ1 > σ2.

(17)

In this case, the investor will hedge ambiguity with the relatively risky asset. The threshold for cross-hedging is in

a similar way, and the remaining analysis is similar to that for the setting in which asset 2 is the relatively safe asset

discussed before.

The condition of (IV) in Theorem 3.1

σ2
1 − σ2

2 − (2/κ) (µ1 − µ2
) ≤ 0 < σ2

1 − σ2
2 − (2/κ) (µ

1
− µ

2
)

implies that R(µ
1
, σ1, µ2

, σ2) < κ/2 ≤ R(µ1, σ1, µ2
, σ2), σ1 > σ2 or R(µ1, σ1, µ2

, σ2) ≤ κ/2 < R(µ
1
, σ1, µ2

, σ2),

σ2 > σ1. The investor still takes asset 2 as the relatively safe asset, which is surely invested. If their correlation

ρ < H(µ
1
, σ1, µ2

, σ2), the investor will hedge the ambiguity associated with asset 2 by taking more than half of

wealth of the relatively risky asset. Otherwise, the investor has no hedge demand, and fully invests in the relatively

safe asset.

The condition of (V) in Theorem 3.1 can be reformulated in a similar way as the above formulation, which

corresponds to the setting in which asset 1 is relatively safe over asset 2. If ρ < H(µ
2
, σ2, µ1

, σ1), asset 1 will be

invested with more than half of the investor’s wealth when asset 2 can be used as a hedging instrument according to

the cross-hedging criterion. Otherwise, the investor will invest all her wealth in the relatively safe asset.

Overall, the investor identifies the safe asset in terms of the relative riskiness between the risky assets. The

relatively risky asset may be used to hedge the ambiguity associated with the relative safe asset if their correlation is

sufficiently low. The testable implication is that an investor’s pool of risky assets consists of relatively safe assets as

well as some relatively risky assets with low correlations to the relatively safe assets. However, not all of the risky

assets will be traded due to the ambiguous dynamics of the risky assets. This general result can be used to explain the

observed “under-diversification” or “home bias” in the data from the robust investment point of view. For example,

if some risky asset cannot be used to hedge the ambiguity embedded in the relatively safe asset, it will not be traded,

leading to the phenomenon of under-diversification. If family shareholders think that the other risky assets cannot be

used to hedge their relatively safe asset, they will hold a large proportion of their wealth in a single firm.

11



Table 2: Parameters for numerical examples

µ1 σ1 µ2 σ2

Case 1 [0.15, 0.25] 0.35 [0.20, 0.30] 0.20

Case 2 [0.21, 0.30] 0.35 [0.10, 0.13] 0.30

Case 3 [0.20, 0.32] 0.35 [0.25, 0.30] 0.30

Case 4 [0.33, 0.40] 0.35 [0.20, 0.30] 0.30

Case 5 0.40 0.35 [0.20, 0.30] 0.30

Case 6 0.30 0.35 [0.25, 0.35] 0.35

The conservative belief on the expected returns and the correlation between the risky assets is associated with

the investor’s position. Whenever longing a risky asset, she will take the lower bound of its expected return as the

worst-case scenario and vice versa. Whenever a risky asset is shorted in the portfolio, the investor will consider the

lower bound of their correlation as the worst-case scenario.

4 Quantitative Analysis

In this section, we quantitatively examine the effects of the ambiguous returns of risky assets on robust investment

strategies. Note that the results in Theorem 3.1 are associated with the investor’s ambiguity preference that affects the

investor’s judgement on the relative riskiness between the two risky assets and the cross-hedging role of the relatively

risky asset. Given the relative riskiness of the risky assets with criterion (14), an investor may not distinguish them

from each other, and invests an equal fraction of her wealth in these two risky assets regardless of their correlation,

as indicated by (I) in Theorem 3.1. But other investors may not take the same strategy since they have different

preferences. The other results in Theorem 3.1 further imply that such differences in the risk preference may make

investors exclude some risky assets out of their portfolios, and invest in the relatively risky asset. Skipping the

equal investment in (I) of Theorem 3.1, we focus on the other results in Theorem 3.1. The ambiguous correlation

[ρ, ρ] ⊆ [−1, 1] and the other parameters associated with different cases are given in Table 2.

Using the parameters of Case 1 in Table 2, we obtain that the conservative relative riskiness R(µ1, σ1, µ2
, σ2) =

0.6061 and R(µ
1
, σ1, µ2

, σ2) = −0.6061. All investors with a CRRA utility (κ > 0) will never invest an equal

fraction of their wealth in these two risky assets. For investors with R(µ1, σ1, µ2
, σ2) < κ/2 and σ1 > σ2, risky

asset 2 will be considered as the relatively safe asset, as indicated in Table 1. Figure 3 illustrates the robust investment

strategies corresponding to different ambiguous correlation for investors with risk preference κ = 2 and 4, respec-

tively. We can see from the figure that the proportion invested in the relatively risky asset ranges from −∞ to 1/2,

as indicated by (II) in Theorem 3.1. The relatively risky asset may be not traded at all if ρ <
σ2

σ1
+
µ1 − µ2

κσ1σ2
and

σ2

σ1
+
µ

1
− µ

2

κσ1σ2
< ρ, because the relatively risky asset cannot be used to hedge the ambiguity embedded in the relative-

ly safe asset. However, the relatively risky asset will be shorted to hedge the ambiguity associated with the relatively

safe asset if
σ2

σ1
+
µ1 − µ2

κσ1σ2
< ρ.
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(a) κ = 2 (b) κ = 4

Figure 3: The case of R(µ1, σ1, µ2
, σ2) < κ/2 and σ1 > σ2, where l =

σ2

σ1
+
µ

1
− µ

2

κσ1σ2
and h =

σ2

σ1
+
µ1 − µ2

κσ1σ2
.

If we adopt the parameter values of Case 2 in Table 2, we obtain the relative riskiness R(µ
1
, σ1, µ2, σ2) = 2.4615

with σ1 > σ2. It is clear that R(µ
1
, σ1, µ2, σ2, ) > κ/2 when κ = 2 or κ = 4. Recalling the rule for the relatively safe

asset in Table 1, we can see that asset 1 is the relatively safe asset. This setting is the counterpart of Case 1 in Table 2.

The proportion invested in the relatively safe asset ranges from 1/2 to∞, as shown in Figure 4. If
σ1

σ2
−
µ

1
− µ2

κσ1σ2
< ρ,

the proportion in the relatively safe asset is higher than 1, meaning that the relatively risky asset is shorted in the case.

As indicated in Theorem 3.1, the relatively risky asset will not be traded unless it can be used to hedge the ambiguity

embedded in the relatively safe asset.

The parameter values of Case 3 in Table 2 correspond to the setting where R(µ
1
, σ1, µ2

, σ2) < κ/2 < R(µ1, σ1, µ2
, σ2)

for κ = 2 or κ = 4. Theorem 3.1 implies that asset 2 will be taken as the relatively safe asset. Asset 1 can work as a

cross-hedging instrument if ρ <
σ2

σ1
+
µ

1
− µ

2

κσ1σ2
. Otherwise, asset 1 will not be traded at all.

The parameter values of Case 4 in Table 2 imply that R(µ
1
, σ1, µ2, σ2) < κ/2 < R(µ

1
, σ1, µ2

, σ2) for κ = 2 or

κ = 4. It is the same setting associated with the last case in Theorem 3.1. In this case, asset 1 is the relatively safe

asset, and asset 2 will not be invested unless ρ <
σ1

σ2
−
µ

1
− µ

2

κσ1σ2
. We can see this pattern in Figure 6, which can be

taken as the counterpart of the pattern in Figure 5.

Figures 3-6 also illustrate the portfolio inertia at π̂ = 0 or π̂ = 1. For example, the sub-figure (a) in Figure 3

shows that the investor will not change her position at π̂ = 0 for different bounds of the correlation as long as l < ρ

and ρ < h. Furthermore, a small change of position around π̂ = 0 entails a large change in the worst-case belief. That

is, the change from the position π̂ = −ε to π̂ = ε for an arbitrary small number ε (ε > 0) is associated with the change

of worst-case belief in the correlation from ρ to ρ as well as the expected return from µ1 to µ
1
. The other figures

indicate the similar patterns with the sub-figure (a) in Figure 3. We omit the detailed analysis of portfolio inertia for

these settings.

An application to the home bias puzzle. It is well documented that individuals and institutions in most countries

hold only modest amounts of foreign equity. This is puzzling since observed returns on national equity portfolios

suggest substantial benefits from international diversification. The home bias in equities was first documented by
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(a) κ = 2 (b) κ = 4

Figure 4: The case of R(µ
1
, σ1, µ2, σ2) > κ/2 and σ1 > σ2, where l =

σ1

σ2
−
µ

1
− µ

2

κσ1σ2
and h =

σ1

σ2
−
µ

1
− µ2

κσ1σ2
.

(a) κ = 2 (b) κ = 4

Figure 5: The case of R(µ
1
, σ1, µ2

, σ2) < κ/2 < R(µ1, σ1, µ2
, σ2), where h =

σ2

σ1
+
µ

1
− µ

2

κσ1σ2
.
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(a) κ = 2 (b) κ = 4

Figure 6: The case of R(µ
1
, σ1, µ2, σ2) < κ/2 < R(µ

1
, σ1, µ2

, σ2), where h =
σ1

σ2
−
µ

1
− µ

2

κσ1σ2
.

French and Poterba (1991) and is called “the home bias puzzle” in the literature. Coval and Moskowitz (1999) find

that home bias is not limited to international portfolios by showing that U.S. investment managers exhibit a strong

preference for locally headquartered firms.

To examine how the ambiguous mean return and correlation affects the phenomenon of the observed home-bias

investment, we consider Cases 5 and 6 in Table 2. Simple calculations lead to σ2
1 − σ2

2 − (2/κ) (µ1 − µ2) < 0 for

κ = 2 or κ = 4 in Case 5, while σ2
1−σ2

2−(2/κ)(µ1−µ2
) < 0 and σ2

1−σ2
2−(2/κ)(µ1−µ2) > 0 for κ = 2 or κ = 4

in Case 6. These settings are the special cases of (III) and (V) in Theorem 3.1, respectively. Specifically, we assume

that the investor is not ambiguous about the dynamics of asset 1, which is referred to as the home asset. In contrast,

the investor has some ambiguity on the dynamics of asset 2 (foreign asset) and the correlation between assets 1 and 2.

The investor will not trade asset 2 if the ambiguous correlation falls into some special intervals, although its volatility

is relatively lower than that of her home asset. For Case 5, the investor invests all her wealth in the home asset (asset

1) in the case of

ρ <
σ1

σ2
− µ1 − µ2

κσ1σ2
and ρ >

σ1

σ2
−
µ1 − µ2

κσ1σ2
,

although its volatility is higher than that of asset 2 (i.e., σ1 > σ2). From the cross-hedging point of view, asset 2 is not

traded because it cannot be used to cross-hedge the risk associated with the home asset (asset 1). In Case 6, although

the two assets has the same volatility, asset 2 is still not traded when the upper bound of their correlation is very high:

ρ >
σ1

σ2
−
µ1 − µ2

κσ1σ2
.

Figures 7 and 8 illustrate these quantitative examples. They clearly show the observed home-bias in portfolio invest-

ment from the cross-hedging point of view when the investor is ambiguous about the return of the foreign asset and its

correlation with the home asset. As emphasized in the last section that our theoretical model provides a unified mech-

anism for explaining “under-diversification”, “home bias”, and “portfolio inertia”, the above quantitative exercises

can also be used to explain the under-diversification and portfolio inertia observed in the data.
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(a) κ = 2 (b) κ = 4

Figure 7: Home-bias investment with σ1 > σ2: σ2
1 − σ2

2 − (2/κ) (µ1 − µ2) ≤ 0, where l =
σ1

σ2
−
µ1 − µ2

κσ1σ2
and

h =
σ1

σ2
− µ1 − µ2

κσ1σ2
.

(a) κ = 2 (b) κ = 4

Figure 8: Home-bias investment with σ1 = σ2: σ2
1 − σ2

2 − (2/κ)(µ1 − µ2
) < 0 and σ2

1 − σ2
2 − (2/κ)(µ1 − µ2) > 0 ,

where h =
σ1

σ2
−
µ1 − µ2

κσ1σ2
.
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5 Conclusion

Optimal portfolio choice with only risky assets is a realistic investment problem for fund managers or equity investors.

In the absence of a risk-free asset, the expected returns and correlation are the key factors that affect the investment

strategy. Due to the cognitive limitation or noisy information, ordinary investors may be confronted with ambiguity

about the randomness behind the dynamics of these risky assets. In this paper, we have investigated robust portfolio

choice between two risky assets, one of which can be a diversified portfolio.

Specifically, we propose a unified framework for modeling the ambiguity about the expected returns and correla-

tion between the risky assets. These quantities can be time-varying or random processes with bounded values. A set

of probability measures is assigned on the state space such that the expected returns and their correlation are in some

compact sets, respectively. This model setup is reduced to the classical investment problem only if one probability

measure lies in this set. That is, the investor has no ambiguity about the dynamics of the risky assets. In this classical

setting, we show that one of the risky assets may be shorted although none of the risky assets will be shorted in the

presence of a risk-free asset. In the ambiguous setting, the robust portfolio rules are much more complicated.

In this paper, we show that the robust investment problem can be decomposed into a two-stage problem. In the

first stage, the typical investor selects a relatively safe asset between the two risky assets according to a criterion, the

so-called relative riskiness. In the second stage, the investor will trade the relatively risky asset if it can be used to

hedge the ambiguity embedded in the relatively safe asset. Otherwise, the investor will not long or short this asset.

The threshold for cross-hedging is analytically obtained to justify if it is necessary to trade the relatively risky asset.

This investment rule provides a deep insight on “under-diversification” or “home bias” from the cross-hedging point

of view. Moreover, if the relative riskiness between the risky assets is acceptable, the investor will equally invest in

them regardless of their correlation. The worst-case scenario of the expected return is its lower bound if the investor

takes a long position on the risky asset, while its upper bound if the risky asset is shorted. The worst-case scenario

of correlation is its lower bound if any risky asset is shorted; otherwise, the investor will take the upper bound as the

conservative belief of the correlation.

In conclusion, this new point of view highlights the effect of the ambiguity about the expected return and correla-

tion between the risky assets, and provides a novel explanation for optimal asset allocation. The resulting investment

strategies are consistent with some stylized facts from the cross-hedging point of view, such as “nonparticipation in

the risky asset market”, “under-diversification”, and “home bias”.
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A Appendix

In the appendix, we will give the proof of Theorem 3.1. Before giving its proof, we first give two useful lemmas.

Lemma A.1. Suppose ϕ ∈ C1,2 ((0, T )× R+) with the polynomial growth conditions, and θ = (µ1, µ2, ρ) ∈ Θ =

Λ× [ρ, ρ]. Assume the following conditions hold.
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(i) Let ϕ be a solution of the following equation (Hamilton-Jacobi-Bellman-Isaacs equation),

sup
π

inf
θ∈Θ

{
ϕt(t, x) + xϕx(t, x)

[
πµ1 + (1− π)µ2

]
+

1

2
x2ϕxx(t, x)

[
π2σ2

1 + 2π(1− π)ρσ1σ2 + (1− π)2σ2
2

]}
= 0 (18)

with boundary condition

ϕ(T, x) = u(T, x) .

(ii) Let π̂(x) ∈ R satisfy

π̂(x) = arg sup
π

inf
θ∈Θ

{
ϕt(t, x) + xϕx(t, x)

[
πµ1 + (1− π)µ2

]
+

1

2
x2ϕxx(t, x)

[
π2σ2

1 + 2π(1− π)ρσ1σ2 + (1− π)2σ2
2

]}
and (µ̂1(x), µ̂2(x), ρ̂(x)) ∈ Θ satisfy

(µ̂1(x), µ̂2(x), ρ̂(x)) = arg inf
θ∈Θ

{
ϕt(t, x) + xϕx(t, x)

[
π̂µ1 + (1− π̂)µ2

]
+

1

2
x2ϕxx(t, x)

[
(π̂)2σ2

1 + 2π̂(1− π̂)ρσ1σ2 + (1− π̂)2σ2
2

]}
.

(iii) If X∗ is the unique solution of the following stochastic differential equation

dX∗t = X∗t
[
π̂t(X

∗
t )µ̂1(X∗t ) + (1− π̂(X∗t )) µ̂2(X∗t )

]
dt+X∗t

[
π̂(X∗t )σ1 + (1− π̂(X∗t )) ρ̂(X∗t )σ2

]
dW θ∗

1,t

+ (1− π̂(X∗t ))
√

1− ρ∗2σ2X
∗
t dW θ∗

2,t,

and X∗0 = x0, where θ∗ = (µ̂1(X∗), µ̂2(X∗), ρ̂(X∗)).

We define π∗t = π̂ (X∗t ), µ∗1,t = µ̂1(X∗t ), µ∗2,t = µ̂2(X∗t ), ρ∗t = ρ̂(X∗t ), for t ∈ [0, T ]. If π∗ ∈ A(x0), and

(µ∗1, µ
∗
2, ρ
∗) ∈ ΓΘ, then π∗ is the optimal investment strategy, and

V (x0) = ϕ (0, x0) = sup
π∈A(x0)

inf
Pθ∈PΘ

EPθ [u (T,Xπ
T )] .

Proof. Since Θ is compact, we know that for any π ∈ R, there exists θ̃ = (µ̃1, µ̃2, ρ̃) such that

inf
θ∈Θ

{
xϕx(t, x)

[
πµ1 + (1− π)µ2

]
+

1

2
x2ϕxx(t, x)

[
π2σ2

1 + 2π(1− π)ρσ1σ2 + (1− π)2σ2
2

]}
= xϕx(t, x)

[
πµ̃1 + (1− π)µ̃2

]
+

1

2
x2ϕxx(t, x)

[
π2σ2

1 + 2π(1− π)ρ̃σ1σ2 + (1− π)2σ2
2

]
.

For any admissible strategy π, we let X̃ be the wealth process under P (µ̃1,µ̃2,ρ̃) as follows:

dX̃t = X̃t

[
πtµ̃1 + (1− πt) µ̃2

]
dt+ X̃t

[
πtσ1 + (1− πt) ρ̃σ2

]
dW µ̃1,µ̃2,ρ̃

1,t

+ (1− πt)
√

1− ρ̃2σ2X̃tdW
µ̃1,µ̃2,ρ̃
2,t ,

and X̃0 = x0.
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By Itô’s lemma, we have

dϕ(t, X̃t) =
(
ϕt(t, X̃t) + X̃tϕx(t, X̃t)

[
πtµ̃1 + (1− πt)µ̃2

]
+

1

2
X̃2
t ϕxx(t, X̃t)

[
π2σ2

1 + 2πt(1− πt)ρ̃σ1σ2 + (1− πt)2σ2
2

])
dt

+ ϕx(t, X̃t)X̃t

[
πtσ1 + (1− πt) ρ̃σ2

]
dW µ̃1,µ̃2,ρ̃

1,t + ϕx(t, X̃t) (1− πt)
√

1− ρ̃2σ2X̃tdW
µ̃1,µ̃2,ρ̃
2,t .

From (18) and (19) we have

dϕ(t, X̃t) ≤ ϕx(t, X̃t)X̃t

[
πtσ1 + (1− πt) ρ̃σ2

]
dW µ̃1,µ̃2,ρ̃

1,t + ϕx(t, X̃t) (1− πt)
√

1− ρ̃2σ2X̃tdW
µ̃1,µ̃2,ρ̃
2,t .

Therefore, EP (µ̃1,µ̃2,ρ̃) [u(T, X̃T )] = EP (µ̃1,µ̃2,ρ̃) [ϕ(T, X̃T )] ≤ ϕ(0, x0), and

V (x0) = sup
π∈A(x0)

inf
Pθ∈PΘ

EPθ [u (T,Xπ
T )] ≤ ϕ (0, x0) .

Let us denote g(t, µ1, µ2, ρ) = ϕt(t,X
π∗
t )+Xπ∗

t ϕx(t,Xπ∗
t )
[
π∗t µ1+(1−π∗t )µ2

]
+1

2(Xπ∗)2
tϕxx(t,Xπ∗

t )
[
(π∗t )

2σ2
1+

2π∗t (1− π∗t )ρσ1σ2 + (1− π∗t )2σ2
2

]
. Then

V (x0) = sup
π∈A(x0)

inf
Pθ∈PΘ

EPθ [u (T,Xπ
T )]

≥ inf
Pθ∈PΘ

EPθ
[
u
(
T,Xπ∗

T

)]
= inf

(µ1,µ2,ρ)∈ΓΘ
EP(µ1,µ2,ρ)

[∫ T

0
g(t, µ1,t, µ2,t, ρt)dt

]
+ ϕ (0, x0)

≥ inf
(µ1,µ2,ρ)∈ΓΘ

EP(µ1,µ2,ρ)

[∫ T

0
inf

(µ1,µ2,ρ)∈ΓΘ
g(t, µ1,t, µ2,t, ρt)dt

]
+ ϕ (0, x0) .

Thanks to the assumptions on π∗, µ∗1, µ
∗
2, ρ
∗, we have

V (x0) ≥ inf
(µ1,µ2,ρ)∈ΓΘ

EP(µ1,µ2,ρ)

[∫ T

0
g(t, µ∗1,t, µ

∗
2,t, ρ

∗
t )dt

]
+ ϕ (0, x0)

= EP(µ∗1,µ
∗
2,ρ
∗)
[∫ T

0
g(t, µ∗1,t, µ

∗
2,t, ρ

∗
t )dt

]
+ ϕ (0, x0)

= ϕ (0, x0) .

From the above we know that π∗ is the optimal investment strategy and

V (x0) = ϕ (0, x0) = sup
π∈A(x0)

inf
Pθ∈PΘ

EPθ [u (T,Xπ
T )] .

Lemma A.2. If a =
1

2
x2ϕxx(t, x) < 0, b = ϕx(t, x)x > 0, and

f(π) = inf
θ∈Θ

{
b
[
πµ1 + (1− π)µ2

]
+ a
[
π2σ2

1 + 2π(1− π)ρσ1σ2 + (1− π)2σ2
2

]}
,

The optimization problem

sup
π∈R

f(π)

has the following solution:
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(1) If σ2
1 − σ2

2 +
b

a
(µ

1
− µ

2
) = 0, then

sup
π
f(π) = f(π̂),

where π̂ = 1
2 .

(2) If σ2
1 − σ2

2 +
b

a
(µ1 − µ2

) > 0.

(i) If ρ < ρ <
σ2

σ1
−
b(µ

1
− µ

2
)

2aσ1σ2
, then

sup
π
f(π) = f(π̂),

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ

1
− µ

2
)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
∈ (0, 1

2).

(ii) If ρ ≤ σ2

σ1
−
b(µ1 − µ2

)

2aσ1σ2
and

σ2

σ1
−
b(µ

1
− µ

2
)

2aσ1σ2
≤ ρ, then

sup
π
f(π) = f(π̂) = bµ

2
+ aσ2

2,

where π̂ = 0.

(iii) If
σ2

σ1
−
b(µ1 − µ2

)

2aσ1σ2
< ρ < ρ, then

sup
π
f(π) = f(π̂),

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ1 − µ2

)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
∈ (−∞, 0).

(3) If σ2
1 − σ2

2 +
b

a
(µ

1
− µ2) ≤ 0.

(i) If ρ < ρ <
σ1

σ2
+
b(µ

1
− µ

2
)

2aσ1σ2
, then

sup
π
f(π) = f(π̂),

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ

1
− µ

2
)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
∈ (1

2 , 1).

(ii) If ρ ≤ σ1

σ2
+
b(µ

1
− µ2)

2aσ1σ2
and

σ1

σ2
+
b(µ

1
− µ

2
)

2aσ1σ2
≤ ρ, then

sup
π
f(π) = f(π̂) = bµ

1
+ aσ2

1,

where π̂ = 1.

(iii) If
σ1

σ2
+
b(µ

1
− µ2)

2aσ1σ2
< ρ < ρ, then

sup
π
f(π) = f3(π̂),

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ

1
− µ2)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
∈ (1,+∞).
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(4) If σ2
1 − σ2

2 +
b

a
(µ

1
− µ

2
) > 0 and σ2

1 − σ2
2 +

b

a
(µ1 − µ2

) ≤ 0.

(i) If
σ2

σ1
−
b(µ

1
− µ

2
)

2aσ1σ2
≤ ρ, then

sup
π
f(π) = f(π̂) = bµ

2
+ aσ2

2,

where π̂ = 0.

(ii) If ρ <
σ2

σ1
−
b(µ

1
− µ

2
)

2aσ1σ2
, then

sup
π
f(π) = f(π̂),

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ

1
− µ

2
)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
∈ (0, 1

2).

(5) If σ2
1 − σ2

2 +
b

a
(µ

1
− µ

2
) < 0 and σ2

1 − σ2
2 +

b

a
(µ

1
− µ2) > 0.

(i) If
σ1

σ2
+
b(µ

1
− µ

2
)

2aσ1σ2
≤ ρ, then

sup
π
f(π) = f(π̂) = bµ

1
+ aσ2

1,

where π̂ = 1.

(ii) If ρ <
σ1

σ2
+
b(µ

1
− µ

2
)

2aσ1σ2
, then

sup
π
f(π) = f(π̂),

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ

1
− µ

2
)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
∈ (1

2 , 1).

Proof. Recalling the function f , we define the following functions:

f1(π) = aπ2(σ2
1 − 2ρσ1σ2 + σ2

2) + bπ(µ
1
− µ

2
) + 2aπ(ρσ1σ2 − σ2

2) + bµ
2

+ aσ2
2 , 0 ≤ π ≤ 1 ,

f2(π) = aπ2(σ2
1 − 2ρσ1σ2 + σ2

2) + bπ(µ1 − µ2
) + 2aπ(ρσ1σ2 − σ2

2) + bµ
2

+ aσ2
2 , π ≤ 0 ,

f3(π) = aπ2(σ2
1 − 2ρσ1σ2 + σ2

2) + bπ(µ
1
− µ2) + 2aπ(ρσ1σ2 − σ2

2) + bµ2 + aσ2
2 , π ≥ 1 .

Then, the optimization problem can be decomposed as the following form

sup
π∈R

f(π) = sup
0≤π≤1

f1(π) ∨ sup
π≤0

f2(π) ∨ sup
π≥1

f3(π) .

We first consider sup
0≤π≤1

f1(π), and define

π1 =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ

1
− µ

2
)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)

=
1

2
−
σ2

1 − σ2
2 +

b

a
(µ

1
− µ

2
)

2(σ2
1 − 2ρσ1σ2 + σ2

2)
.

(A1) If σ2
1 − σ2

2 +
b

a
(µ

1
− µ

2
) > 0, then π1 is decreasing in ρ, and π1 <

1
2 .
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(i) If
σ2

σ1
−
b(µ

1
− µ

2
)

2aσ1σ2
≤ ρ, then π1 ≤ 0. Therefore,

sup
0≤π≤1

f1(π) = f1(π̂) = f1(0) = bµ
2

+ aσ2
2 > f1(1) = bµ

1
+ aσ2

1,

where π̂ = 0.

(ii) If ρ <
σ2

σ1
−
b(µ

1
− µ

2
)

2aσ1σ2
, then π1 ∈ (0, 1

2). Therefore,

sup
0≤π≤1

f1(π) = f1(π̂) > f1(0) = bµ
2

+ aσ2
2 > f1(1) = bµ

1
+ aσ2

1,

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ

1
− µ

2
)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
∈ (0, 1

2).

(A2) If σ2
1 − σ2

2 +
b

a
(µ

1
− µ

2
) < 0, then π1 is increasing in ρ, and π1 >

1

2
.

(i) If
σ1

σ2
+
b(µ

1
− µ

2
)

2aσ1σ2
≤ ρ, then π1 ≥ 1. Therefore,

sup
0≤π≤1

f1(π) = f1(π̂) = f1(1) = bµ
1

+ aσ2
1 > f1(0) = bµ

2
+ aσ2

2,

where π̂ = 1.

(ii) If ρ <
σ1

σ2
+
b(µ

1
− µ

2
)

2aσ1σ2
, then π1 ∈ (

1

2
, 1). Therefore,

sup
0≤π≤1

f1(π) = f1(π̂) > f1(1) = bµ
1

+ aσ2
1 > f1(0) = bµ

2
+ aσ2

2,

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ

1
− µ

2
)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
∈ (

1

2
, 1).

(A3) If σ2
1 − σ2

2 +
b

a
(µ

1
− µ

2
) = 0, then π1 =

1

2
.

sup
0≤π≤1

f1(π) = f1(π̂) > f1(1) = bµ
1

+ aσ2
1 = f1(0) = bµ

2
+ aσ2

2,

where π̂ =
1

2
.

We now consider sup
π≤0

f2(π), and define

π2 =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ1 − µ2

)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)

=
1

2
−
σ2

1 − σ2
2 +

b

a
(µ1 − µ2

)

2(σ2
1 − 2ρσ1σ2 + σ2

2)
.

(B1) If σ2
1 − σ2

2 +
b

a
(µ1 − µ2

) > 0, then π2 is decreasing in ρ, and π2 <
1
2 .

(i) If
σ2

σ1
−
b(µ1 − µ2

)

2aσ1σ2
< ρ, then π2 < 0. Therefore,

sup
π≤0

f2(π) = f2(π̂) > f1(0) = bµ
2

+ aσ2
2,

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ1 − µ2

)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
< 0.
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(ii) If ρ ≤ σ2

σ1
−
b(µ1 − µ2

)

2aσ1σ2
, then π2 ∈ [0, 1

2). Therefore,

sup
π≤0

f2(π) = f2(π̂) = f1(0) = bµ
2

+ aσ2
2 > f2(1) = bµ1 + aσ2

1,

where π̂ = 0.

(B2) If σ2
1 − σ2

2 +
b

a
(µ

1
− µ

2
) ≤ 0, then π2 is decreasing in ρ, and π2 ≥ 1

2 . Therefore,

sup
π≤0

f2(π) = f2(π̂) = f2(0) = bµ
2

+ aσ2
2 ≤ f2(1) = bµ1 + aσ2

1,

where π̂ = 0.

We consider sup
π≥1

f3(π), and define

π3 =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ

1
− µ2)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)

=
1

2
−
σ2

1 − σ2
2 +

b

a
(µ

1
− µ2)

2(σ2
1 − 2ρσ1σ2 + σ2

2)
.

(C1) If σ2
1 − σ2

2 +
b

a
(µ

1
− µ2) > 0, then π3 <

1

2
. Therefore,

sup
π≥1

f3(π) = f3(π̂) = f3(1) = bµ
1

+ aσ2
1,

where π̂ = 1.

(C2) If σ2
1 − σ2

2 +
b

a
(µ

1
− µ2) ≤ 0, then π3 is increasing in ρ, and π3 ≥

1

2
.

(i) If ρ ≤ σ1

σ2
+
b(µ

1
− µ2)

2aσ1σ2
, then π3 ∈ [1

2 , 1]. Therefore,

sup
π≥1

f3(π) = f3(π̂) = f3(1) = bµ
1

+ aσ2
1 ≥ f3(0) = bµ2 + aσ2

2,

where π̂ = 1.

(ii) If
σ1

σ2
+
b(µ

1
− µ2)

2aσ1σ2
< ρ, then π3 > 1. Therefore,

sup
π≥1

f3(π) = f3(π̂) > f3(1) = bµ
1

+ aσ2
1,

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ

1
− µ2)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
> 1.

If σ2
1 − σ2

2 +
b

a
(µ1 − µ2

) > 0, then from (A1), (B1) and (C1) we have the following.

(i) If ρ < ρ <
σ2

σ1
−
b(µ

1
− µ

2
)

2aσ1σ2
, then

sup
π
f(π) = f1(π̂) = f(π̂),

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ

1
− µ

2
)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
∈ (0, 1

2).
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(ii) If ρ ≤ σ2

σ1
−
b(µ1 − µ2

)

2aσ1σ2
and

σ2

σ1
−
b(µ

1
− µ

2
)

2aσ1σ2
≤ ρ, then

sup
π
f(π) = f1(π̂) = f1(0) = f2(0) = bµ

2
+ aσ2

2,

where π̂ = 0.

(iii) If
σ2

σ1
−
b(µ1 − µ2

)

2aσ1σ2
< ρ < ρ, then

sup
π
f(π) = f2(π̂),

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ1 − µ2

)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
∈ (−∞, 0).

If σ2
1 − σ2

2 +
b

a
(µ

1
− µ2) ≤ 0, then from (A2), (B2) and (C2) we have the following.

(i) If ρ < ρ <
σ1

σ2
+
b(µ

1
− µ

2
)

2aσ1σ2
, then

sup
π
f(π) = f1(π̂) = f(π̂),

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ

1
− µ

2
)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
∈ (1

2 , 1).

(ii) If ρ ≤ σ1

σ2
+
b(µ

1
− µ2)

2aσ1σ2
and

σ1

σ2
+
b(µ

1
− µ

2
)

2aσ1σ2
≤ ρ, then

sup
π
f(π) = f1(π̂) = f1(1) = f3(1) = bµ

1
+ aσ2

1,

where π̂ = 1.

(iii) If
σ1

σ2
+
b(µ

1
− µ2)

2aσ1σ2
< ρ < ρ, then

sup
π
f(π) = f3(π̂),

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ

1
− µ2)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
∈ (1,+∞).

If σ2
1 − σ2

2 +
b

a
(µ

1
− µ

2
) = 0, then from (A3), (B2) and (C1) it follows that

sup
π
f(π) = f1(π̂),

where π̂ = 1
2 .

If σ2
1 − σ2

2 +
b

a
(µ

1
− µ

2
) > 0 and σ2

1 − σ2
2 +

b

a
(µ1 − µ2

) ≤ 0, then from (A1), (B2) and (C1) we have the

following.

(i) If
σ2

σ1
−
b(µ

1
− µ

2
)

2aσ1σ2
≤ ρ, then

sup
π
f(π) = f1(π̂) = f1(0) = bµ

2
+ aσ2

2,

where π̂ = 0.
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(ii) If ρ <
σ2

σ1
−
b(µ

1
− µ

2
)

2aσ1σ2
, then

sup
π
f(π) = f1(π̂),

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ

1
− µ

2
)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
∈ (0, 1

2).

If σ2
1 − σ2

2 +
b

a
(µ

1
− µ

2
) < 0 and σ2

1 − σ2
2 +

b

a
(µ

1
− µ2) > 0, then from (A2), (B2) and (C1) we have the

following.

(i) If
σ1

σ2
+
b(µ

1
− µ

2
)

2aσ1σ2
≤ ρ, then

sup
π
f(π) = f1(π̂) = f1(1) = bµ

1
+ aσ2

1,

where π̂ = 1.

(ii) If ρ <
σ1

σ2
+
b(µ

1
− µ

2
)

2aσ1σ2
, then

sup
π
f(π) = f1(π̂),

where π̂ =
σ2

2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

−
b(µ

1
− µ

2
)

2a(σ2
1 − 2ρσ1σ2 + σ2

2)
∈ (1

2 , 1).

Proof of Theorem 3.1.

Proof. Let us suppose

ϕ(t, x) = g(t)
x(1−κ)

1− κ
,

where g(t) is a deterministic function of t. g(t) is solved by using Lemmas A.1 and A.2, and we omit it here.
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