Online Appendix for “Long-run Consumption Risk and Asset Allocation under Recursive Utility and Rational Inattention”

Yulei Luo∗
University of Hong Kong

Eric R. Young†
University of Virginia

Forthcoming in Journal of Money, Credit and Banking

1. Deriving the Stochastic Properties of Consumption Dynamics

Taking unconditional variance on both sides of the expression for individual consumption dynamics,

$$\Delta c_{t+1}^* = \theta \left\{ \frac{\alpha^* u_{t+1}}{1 - ((1 - \theta) / \phi) \cdot L} + \left[\xi_{t+1} - \frac{(\theta / \phi) \xi_t}{1 - ((1 - \theta) / \phi) \cdot L} \right] \right\},$$ \hspace{1cm} (1)

yields

$$\text{var} \left[\Delta c_t^* \right] = \theta^2 \left\{ \frac{\alpha^{*2} \omega^2}{1 - (1 - \theta)^2 / \phi^2} + \frac{\theta^2 / \beta^2}{1 - (1 - \theta)^2 / \beta^2} \right\} \omega^2_{\xi}$$

$$= \theta^2 \left\{ \frac{1}{1 - (1 - \theta)^2 / \phi^2} + \frac{1}{(1 - \theta) / \phi - \frac{1}{1 - (1 - \theta)^2 / \phi^2}} \right\} \alpha^{*2} \omega^2$$

$$= \frac{\theta^2 \phi^2}{\phi^2 + \theta - 1} \alpha^{*2} \omega^2.$$

Note that in the absence of the endogenous noise shocks (i.e., $\xi_t = 0$), we have

$$\text{var} \left[\Delta c_t^* \right] = \theta^2 \frac{\alpha^{*2} \omega^2}{1 - (1 - \theta)^2 / \phi^2} = \frac{\theta^2}{1 - (1 - \theta) / \phi^2} \alpha^{*2} \omega^2.$$

∗Faculty of Business and Economics, University of Hong Kong, Hong Kong. Email: yulei.luo@gmail.com.
†Department of Economics, University of Virginia, Charlottesville, VA 22904. E-mail: ey2d@virginia.edu.
Using (1), we can compute the first-order autocovariance of consumption growth as follows:

$$\text{cov}(\Delta c_t^*, \Delta c_{t+1}^*) = \text{cov} \left(\theta \left\{ \frac{\theta^* u_t}{1 - ((1 - \theta) / \phi) \cdot L} + \frac{\xi_t - ((\theta / \phi) \xi_{t-1})}{1 - ((1 - \theta) / \phi) \cdot L} \right\}, \theta \left\{ \frac{\alpha^* u_{t+1}}{1 - ((1 - \theta) / \phi) \cdot L} + \frac{\xi_{t+1} - ((\theta / \phi) \xi_t)}{1 - ((1 - \theta) / \phi) \cdot L} \right\} \right)$$

$$= \frac{1 - \theta}{\phi} \text{cov} \left(\frac{\theta \alpha^* u_t}{1 - ((1 - \theta) / \phi) \cdot L}, \frac{\theta \alpha^* u_t}{1 - ((1 - \theta) / \phi) \cdot L} \right)$$

$$+ \text{cov} \left(\theta \left(\xi_t - \frac{(\theta / \phi) \xi_{t-1}}{1 - ((1 - \theta) / \phi) \cdot L} \right), \frac{\theta (\theta / \phi) \xi_t}{1 - ((1 - \theta) / \phi) \cdot L} \right)$$

$$= \frac{1 - \theta}{\phi} \text{cov} \left(\frac{\theta \alpha^* u_t}{1 - ((1 - \theta) / \phi) \cdot L}, \frac{\theta \alpha^* u_t}{1 - ((1 - \theta) / \phi) \cdot L} \right)$$

$$+ \frac{1 - \theta}{\phi} \text{var} \left(\frac{\theta \alpha^* u_t}{1 - ((1 - \theta) / \phi) \cdot L} \right)$$

$$= \frac{1 - \theta}{\phi} \left(\frac{\theta^2 (\theta^* \alpha^2) \omega^2}{1 - (1 - \theta)^2 / \phi^2} \right) + \frac{1 - \theta}{\phi} \left(\frac{\theta^2 (\theta^* \alpha^2) \omega^2}{1 - (1 - \theta)^2 / \phi^2} \right)$$

$$= \frac{1 - \theta}{\phi} \left(\frac{\theta^3 + \theta^2}{1 - (1 - \theta)^2 / \phi^2} \right)$$

$$= 0.$$

We thus have

$$\text{corr}(\Delta c_t^*, \Delta c_{t+1}^*) = \frac{\text{cov}(\Delta c_t^*, \Delta c_{t+1}^*)}{\sqrt{\text{var}(\Delta c_t^*) \sqrt{\text{var}(\Delta c_{t+1}^*)}}} = 0.$$
Finally, using (1), it is straightforward to show that
\[
\text{corr} (\Delta c^*, t+1, u_{t+1}) = \frac{\text{cov} (\Delta c^*, u_{t+1})}{\text{sd}(\Delta c^*) \text{sd}(u_{t+1})} = \frac{\theta \alpha^* \omega^2}{\sqrt{\frac{\theta^2}{\phi^2} + \alpha^* \omega^2}} = \sqrt{\theta \left(1 - \frac{1}{\phi^2}\right)} ,
\]
where we use the result that
\[
\text{cov} (\Delta c^*, u_{t+1}) = \text{cov} (\theta \alpha^* u_{t+1}, u_{t+1}) = \theta \alpha^* \omega^2 .
\]
Note that in the absence of the endogenous noise shocks, we have
\[
\text{corr} (\Delta c^*, u_{t+1}) = \sqrt{\left(1 - \frac{1}{\phi^2}\right)} ,
\]

2. Deriving the Long-run Risk in the Presence of the Correlated Noise

Substituting (1) into
\[
\pi = \text{cov}_t \left\{ \frac{\rho}{\sigma} \left(\sum_{j=0}^{S} \Delta c_{t+1+j} \right) + (1 - \rho) \left(\sum_{j=0}^{S} r_{p,t+1+j} \right), u_{t+1} \right\} ,
\]
we have
\[
\pi = \lim_{S \to \infty} \left\{ \sum_{j=0}^{S} \text{cov}_t \left[\frac{\rho}{\sigma} \left\{ \frac{u_{t+1+j}}{1 - \frac{1}{(1-\theta)/\phi} L} + \left[\xi_{t+1+j} - \frac{(\theta/\phi) \xi_{t+1+j}}{1 - \frac{1}{(1-\theta)/\phi} L} \right] \right\} + (1 - \rho) \left(\sum_{j=0}^{S} r_{p,t+1+j} \right), u_{t+1} \right] \right\}
\]
\[
= \frac{\rho \theta}{\sigma} \left\{ \frac{1}{1 - \frac{1}{(1-\theta)/\phi}} \alpha^2 \omega^2 + \left[1 - \frac{\theta}{\phi} \frac{1}{1 - \frac{1}{(1-\theta)/\phi}} \right] \alpha^2 \omega^2 \right\} + (1 - \rho) \alpha^2 \omega^2
\]
\[
= \frac{\rho \theta}{\sigma} \left\{ \frac{1}{1 - \frac{1}{(1-\theta)/\phi}} + \rho \omega^2 \left[1 - \frac{\theta}{\phi} \frac{1}{1 - \frac{1}{(1-\theta)/\phi}} \right] \sqrt{\frac{1}{1 - \frac{1}{(1-\theta)/\phi} \frac{1}{\phi}}} \alpha^2 \omega^2 \right\} + (1 - \rho) \alpha^2 \omega^2
\]
\[
= \left\{ \frac{\rho}{\sigma} \left[1 - \frac{\theta}{\phi} \frac{1}{1 - \frac{1}{(1-\theta)/\phi}} \right] + (1 - \rho) \right\} + \frac{\rho \omega^2 \theta}{\sigma} \left[1 - \frac{\theta}{\phi} \frac{1}{1 - \frac{1}{(1-\theta)/\phi}} \right] \sqrt{\frac{1}{1 - \frac{1}{(1-\theta)/\phi} \frac{1}{\phi}}} \alpha^2 \omega^2 \right\} + (1 - \rho) \alpha^2 \omega^2 ,
\]
which will reduce to the expression for \(\Gamma \) in the text. Note that here we use the fact that \(\omega^2_s = \sqrt{\frac{1}{\left[\exp(2\kappa) - (1/\phi)^2\right] \phi}} \) \(\alpha^2 \omega \).
3. Deriving Optimal Consumption and Portfolio Rules in the Presence of Uninsurable Labor Income

Log-linearizing the flow budget constraint, \(A_{t+1} = R_{t+1}^p \left(A_t + Y_t - C_t \right) \), around the long-run means of the log consumption-income ratio and the log wealth-income ratio, \(c - y = E [c_t - y_t] \) and \(a - y = E [a_t - y_t] \), yields the approximate budget constraint

\[
a_{t+1} - y_{t+1} = \rho_0 + \rho_a (a_t - y_t) + \rho_c (c_t - y_t) - \Delta y_{t+1} + r_{t+1}^p
\]

where \(\rho, \rho_a, \) and \(\rho_c \) are constants:

\[
\rho_a = \frac{\exp (a - y)}{1 + \exp (a - y) - \exp (c - y)} > 0,
\]

\[
\rho_c = \frac{\exp (c - y)}{1 + \exp (a - y) - \exp (c - y)} > 0,
\]

\[
\rho_0 = - (1 - \rho_a + \rho_c) \log (1 - \rho_a + \rho_c) - \rho_a \log (\rho_a) + \rho_c \log (\rho_c) .
\]

Starting from the standard full-information rational expectations model with expected utility \((\gamma = \sigma \) and \(\theta = 1) \), we obtain the decision rules

\[
c_t = y_t + b_0 + b_1 (a_t - y_t)
\]

\[
\alpha^* = \frac{1}{b_1} \left(\frac{\mu - r_f + \frac{1}{2} \omega^2}{\gamma \omega^2} \right) + \left(1 - \frac{1}{b_1} \right) \frac{\omega_{ww}}{\omega^2}
\]

where

\[
b_1 = \frac{\rho_a - 1}{\rho_c} \in (0, 1],
\]

\[
b_0 = \frac{1}{1 - \rho_a} \left[\left(\frac{1}{\gamma} - b_1 \right) E [r_{t+1}^p] + \frac{1}{\gamma} \log (\beta) + \frac{\Xi}{2 \gamma} - \rho_0 - (1 - b_1) g \right].
\]

Here \(b_1 \) is the elasticity of consumption with respect to financial wealth, making \(1 - b_1 \) the elasticity with respect to labor income, and \(\Xi \) is an irrelevant constant term. If labor income is tradable, \(b_1 = 1 \) and the model reduces to the one studied previously.

To help introduce rational inattention, we define a new state variable

\[
s_t = a_t + \lambda y_t,
\]

where

\[
\lambda = \frac{1 - \rho_a + \rho_c}{\rho_a - 1}.
\]

(As we have noted earlier, multivariate rational inattention models are analytically intractable, so the reduction of the state space to a single variable is critical for our results.) Using this new state
variable, the log-linearized budget constraint (3) can be rewritten as

\[s_{t+1} = \rho_0 + \rho_a s_t - \rho_c c_t - g + \rho_t \epsilon_{t+1} + \lambda \nu_{t+1} + r^p_{t+1}. \]

(5)

The consumption function can thus be rewritten as:

\[c_t = b_0 + b_1 s_t. \]

(6)

As in the benchmark model, applying the separation principle yields:

\[c_t = b_0 + b_1 \hat{s}_t \]

(7)

and we obtain the law of motion for the conditional mean of permanent income

\[\hat{s}_{t+1} = (1 - \theta) \hat{s}_t + \theta (s_{t+1} + \tilde{g}_{t+1}) + Y, \]

(8)

where \(Y \) is an irrelevant constant and all other notation is the same as that used in the benchmark model.

Given the assumption that \(1 - (1 - \theta) \rho_a > 0 \), applying the same long-term Euler equation we used in the benchmark model, we can solve for the optimal share invested in equity in the presence of labor income as:

\[\alpha^* = \frac{1}{\tilde{\zeta}} \left[\frac{1}{b_1} \left(\frac{\mu - r^f + 0.5 \omega^2}{\omega^2} \right) + \left(1 - \frac{1}{b_1} \right) \tilde{\zeta} \omega \omega' \right] \]

(9)

where \(\tilde{\zeta} = \frac{b_1}{\rho} + 1 - \rho \) and \(\zeta = \frac{\theta}{1 - (1 - \theta) \rho_a} > 1. \)