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1 Introduction

In more than half a century, economists have made great strides toward a better understanding of

firms’ inventory decisions. This progress is unsurprising given the disproportionate role inventory

investment plays in explaining fluctuations in output.1 Many previous studies on inventory dynamics

are based on the linear-quadratic framework developed by Holt et at. (1960), which assumes firms’

production and inventory decisions are associated with convex costs and stochastic demand and

costs. Three prominent theories have emerged from this framework: the production smoothing (PS)

model, which assumes firms use inventories to minimize production fluctuations given stochastic

demand; the production cost smoothing (PCS) model, which introduces shocks to the marginal cost

of production and assumes that firms hold inventories to smooth the production costs rather than

production levels; and the stock-out avoidance (SOA) model, which assumes firms have incentive to

accumulate inventories because they cannot short sell their products without cost.

Researchers have questioned whether these theories can rationalize two important aspects of

the data: the higher volatility of production relative to sales and the procyclicality of inventory

investment. The consensus in the literature is that the PS model fails to generate a volatility of

output higher than that of sales (which is known as the “production smoothing puzzle”).2 Although

the PCS model can generate a higher output volatility with the help of large cost shocks to production,

it fails to generate procyclical inventory investment. The SOA model appears to be more consistent

with the data along these two dimensions. We provide an alternative mechanism by which firms can

avoid negative inventories and makes the model to be consistent with data in more dimensions.3

One common feature of these models is that they assume firms know exactly the probability

distributions of the demand and cost shock processes. For example, a typical assumption used in

the literature is an AR(1) specification for both the demand (Blinder 1982) and cost shock processes

(Eichenbaum 1989). Firms consider them as true data-generating processes for demand and cost

1Inventory investment constitutes less than 1 percent of real GDP in most countries, but accounts for a significant

fraction of real GDP fluctuations. For example, in the United States, the decline in inventory investment in the two

most recent severe recessions, 1990− 1991 and 2007− 2009, explains 49 percent and 42 percent of the total decline in

output, respectively.
2The production smoothing puzzle was first raised by Blanchard (1983). If inventories are used to absorb fluctuations

in demand, the model predicts that production will be smoother than sales. However, the data show the opposite. See

Blinder (1986), Blinder and Maccini (1991), and Lai (1991) for detailed discussions on this puzzle.
3Section 6 provides more detailed discussions on the two different ways to model stockout avoidance motives.
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shocks, and in turn use them to form expectations for next period’s demand and cost values. In

practice, however, the true demand and cost shock processes may be difficult to precisely measure.

Thus, it is plausible that firms’ reference models for these processes may be misspecified in some

way, and that firms may be aware of this potential for error and alter their production and inventory

decisions accordingly.

In this paper, we study the implications of firms’ uncertainty about these demand- and cost-shock

processes for the joint dynamics of inventories, production, and sales. We generalize an otherwise

standard PCS model by assuming: (i) that firms face Knightian uncertainty (or model uncertainty)

about the true dynamics of sales and production costs; and ii) that aversion to this uncertainty leads

them to make production and inventory decisions under the worst-case scenario.4 Our approach is

also partially motivated by the increased concerns following the 2007 − 2009 financial crisis about

whether existing macroeconomic models are misspecified. Some recent papers argue that model

uncertainty, the “unknown unknowns,” played an important role in the recent economic and financial

crises (see, for example, Caballero and Krishnamurthy, 2008).

We describe firms’ aversion to ambiguity about the true dynamics of sales and production cost

using the preference for robustness proposed by Hansen and Sargent (2007). In robustness models,

agents have in mind a reference model that represents their best estimate of the model economy.

However, because they are worried that this reference model may be incorrect in some hard-to-specify

way, they make their optimal decisions under the worst-case scenario that they consider reasonable.

We assume that firms are concerned about the possibility that their true model is misspecified in

a manner that is difficult to detect statistically; consequently, they choose their decisions as if the

subjective distribution over shocks was chosen by an evil agent in order to maximize their expected

total costs.5

Our main result is that once we take ambiguity aversion into account, an otherwise standard PCS

model can generate not only the two aspects of the data mentioned above but also other features of

the data, including the relative volatility of inventory investment to sales and the contemporaneous

4Throughout this paper we use “Knightian uncertainty” and “model uncertainty” interchangeably.
5In this paper, we follow Hansen et al. (1999), Hansen and Sargent (2007), and Bidder and Smith (2012) in studying

a model with ambiguity aversion described by “multiplier” preferences. For other specifications and applications of

ambiguity aversion and robustness in macroeconomics, see Luo and Young (2010), Ilut and Schneider (2014), and Ilut

et al. (2020).

2



correlation between the inventory-to-sales ratio and sales. In addition, introducing ambiguity aversion

into our PCS model allows the SOA motive to emerge endogenously, reconciling the PCS model with

the SOA model, due to a precautionary motive.6 These findings suggest that embedding ambiguity

aversion into this framework is a promising and perhaps necessary step for rationalizing the dynamics

of inventories and production.

The key mechanism through which ambiguity aversion influences production and inventory dy-

namics are as follows. First, as firms with ambiguity aversion are concerned that their reference

model (i.e., the best estimated model using available data and knowledge) is misspecified in some

aspects and make production decisions under the worst-case scenario, production becomes more sen-

sitive to shocks than without ambiguity aversion. For example, when firms with ambiguity aversion

see a positive sales shock, they fear that future sales might be higher than what the reference model

suggests, and thus produce more than without ambiguity aversion to better smooth production. Sec-

ond, the uncertainty (about future sales and production costs) generates precautionary behavior for

firms, implying that firms with ambiguity aversion on average have higher levels of production and

inventories than without ambiguity aversion. This precautionary pattern can be labeled “making

hay while the sun shines”. It is worth noting that the “making hay while the sun shines” mechanism

was also discussed in the literature on consumption and savings such as Hansen et al. (1999) and

Luo and Young (2010).

This mechanism enables our model to explain ten dimensions of data including the two stylized

ones mentioned above.7 First, as firms adjust production more aggressively in response to sales, the

relative volatility of production to sales will increase, helping to resolve the production-smoothing

puzzle. Second, when the response of production to sales is larger than one-to-one (say, due to

a high degree of ambiguity aversion), the response of inventories can move in the same direction

as sales, producing procyclical inventory investment. Third, the response of inventory investment

to sales changes from negative to positive as ambiguity aversion rises, the volatility of inventory

investment first declines and then rises. Fourth, the inventory-to-sales ratio becomes countercyclical

6Our theory differs from the cost shock channel. As argued in Wen (2005), if inventories cannot be negative and

demand and cost shocks are uncorrelated, allowing for cost shocks does not change the correlation between sales and

inventory investment.
7It is not surprising that some of these ten dimensions are highly correlated. For example, if production andn sales

are highly correlated and the contemporaneous correlation between inventory investment and sales is negative, then he

contemporaneous correlation between inventory investment and production is also negative.
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if ambiguity aversion is sufficiently strong, because a sufficiently strong degree of ambiguity aversion

successfully prevents firm inventories from turning negative, an important point linked to the SOA

motive.8 In other words, this precautionary behavior due to ambiguity aversion can endogenously

generate the stock-out avoidance motive even though we do not model the ad hoc SOA motive via

adding a non-negativity constraint on inventories or an “accelerator” term in the inventory-holding

cost function.

We use the GMM to estimate the four key model parameters: the persistence and volatility

of the cost shock, the relative importance of inventory holding costs, and the degree of ambiguity

aversion. To cover as more as possible the relevant data information, we consider ten moments in

our estimation. (See the detailed definitions of these moments in Table 1 and Proposition 2.) At

the estimated parameter values, our model matches all ten moments reasonably well. The uncovered

value of the model uncertainty parameter implies a 22% probability that the best estimated processes

(which are AR(1) processes) cannot be statistically distinguished from the worst-case models based

on a likelihood ratio test. This value is in the reasonable range of the values reported in the robust

control literature and implies that the model’s success is not due to unreasonable fears of model

misspecification.

As mentioned earlier, we show that the presence of Knightian uncertainty provides an endogenous

mechanism for generating a stock-out avoidance motive. The stock-out avoidance motive was first

proposed by Kahn (1987) and has been widely used in the inventory literature, as it successfully re-

solves the production-smoothing puzzle. Existing models incorporate the stock-out avoidance motive

in two ways. The first is to directly impose a non-negative constraint on inventories (Kahn 1987; Wen

2005) so firms have to accumulate more inventories to avoid possible stock-outs. The second is to

include an “accelerator” term that represents a quadratic cost associated with allowing inventories to

deviate from some fixed proportion of sales (Eichenbaum, 1989; Ramey, 1991; and Ramey and West,

1999). Notice that this cost term may not completely rule out negative inventories.9 We show that

our model with model uncertainty endogenously avoids negative inventories with a reasonable degree

of ambiguity aversion. The intuition is that firms with higher ambiguity aversion have a stronger

8When there is no ambiguity or the degree of ambiguity aversion is low, inventory is generally negative. For example,

see lower panels of Figure 5. It is the negative inventory that makes the inventory-to-sales ratio countercyclical.
9In one simulation exercise, we show ruling out negative inventories requires the parameter on the targeted proportion

of sales to be significantly higher than empirically plausible.
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incentive to accumulate inventories as their decisions are based on the worst-case scenario, which

generates a form of precautionary savings. Therefore, taking Knightian uncertainty into account can

endogenously generate the stock-out avoidance motive even though the interpretation is completely

different.

We choose the linear-quadratic Gaussian (LQG) framework to study the implications of ambiguity

aversion on the dynamics of inventory and production mainly because this is the primary framework

used in this literature. This structure makes it easier for us to contrast our results with the existing

results from other models. In addition, as shown in Hansen and Sargent (2007, 2010), within the

LQG setting using relative entropy to measure model misspecification leads to a simple generalization

to the ordinary LQG dynamic program problem, which keeps our model tractable and allows us to

fully inspect the mechanism through which ambiguity aversion affects the dynamics of production

and inventories. There are also a few recent papers that study inventory dynamics and business

cycles based on general equilibrium models (Khan and Thomas, 2007; Wen, 2011). These models

include more elements so as to study a wide range of other important issues on business cycles, the

complexities in these models obscure the intuition we want to highlight. The main point we make

here is that once we allow for a moderate degree of ambiguity aversion, a standard LQG inventory

model can explain the data reasonably well, even without explicitly assuming the stockout avoidance

motive.

Related Literature Our paper is related to two branches of literature. First, it is related

to the long branch of literature examining the joint dynamics of production, inventories, and sales

based on the linear-quadratic framework dating back to Holt et al. (1960). This literature in

general studies different theories’ implications for inventory and production dynamics focusing on

two aspects. Blanchard (1983) is the first to show the production-smoothing model cannot explain

why output volatility is higher than sales volatility in the data. To increase the relative volatility

of output to sales, Blinder (1986), West (1987), and Eichenbaum (1989) convert the production

smoothing model into a production-cost smoothing model by introducing shocks to technology and

production cost. Eichenbaum (1989) provides empirical evidence for the PCS model over the PS

model. Kahn (1987) and Maccini and Zabel (1996) show that incorporating the SOA motive can

also help explain the relative high output volatility. Wen (2005) shows that the PCS model cannot

explain the procyclical inventory investment, while the SOA model can. Bils and Kahn (2000) use
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the cyclicality of the inventory-to-sales ratio to derive the implications for the cyclicality of markups.

Kryvstov and Midrigan (2013), Sarte et al. (2015), and Görtz et al. (2022) use inventory models to

make inferences about drivers of business cycles. Our paper contributes to this literature by showing

that incorporating ambiguity aversion not only helps the LQG inventory framework account for the

data, but it also endogenously generates the SOA motive.

Second, our paper contributes to the branch of literature on Knightian uncertainty, ambiguity

aversion, and robustness. Many recent papers have shown the usefulness of viewing agents as having

(potentially) misspecified models and being aware of this fact. See, for example, Hansen et al.

(1999), Hansen and Sargent (2010), Bidder and Smith (2012), Luo et al. (2012), Djeutem and Kasa

(2013), Ilut and Schneider (2014), and Ilut et al. (2020). In addition, the implied distortion due to

ambiguity aversion in our model is similar to the AR(1) ambiguity shocks proposed in Bhandari et

al. (2022). They identify AR(1) ambiguity shocks using U.S. survey data, and find that empirically

the ambiguity shocks are an important source of variation in labor market variables. To the best of

our knowledge, we are the first to introduce Knightian uncertainty and ambiguity aversion into the

inventory literature.

The rest of paper is organized as follows. Section 2 presents the data and facts. Section 3 first

examines the theoretical implications of the RE-PCS model, and then introduces our benchmark

model of robust production and inventory decisions. Section 4 delivers the model’s quantitative

implications and show how the model fits the data well along the key aspects. Section 5 extends

our model by considering endogenous sales. Section 6 compares our model with the traditional SOA

model. Section 7 provides further discussions on the dynamics of inventories and production. Section

8 concludes.

2 Data and Facts

In this section, we document some facts regarding the joint behavior of production, inventories, and

sales. We focus primarily on the manufacturing sector, where inventories play an important role in

the production process. As a robustness check, we also report results using data from the wholesale

and retail sectors in Online Appendix A.

Our monthly data comes from the Bureau of Economic Analysis (BEA) and covers the 1967m1−

2018m12 period. To exclude the volatile period around the Global Financial Crisis (GFC), we also

6



report statistics based on a sample prior to the GFC, i.e., 1967m1–2007m12.10 Following Blinder

and Maccini (1991), we define the inventory stock as the sum of the final goods inventory plus work-

in-progress (WIP) inventory. We include WIP following the arguments in Ramey and West (1999)

that changes in final goods inventory only accounts for a small and relatively-smooth fraction of

inventory investment, and therefore does not present a full picture.

Following Blinder (1986) and Kryvstov and Midrigan (2013), we define our production measure

as the sum of sales and inventory investment. We take logarithms of the raw data and detrend using

the HP filter.11 Sales, xt, are from different sector, and we take the logarithm and detrend it to get

HP filtered log (xt). Monthly output are constructed from yt = xt + ∆it, where it is the sectorial

inventory stock. For wholesale and retail sectors, yt is associated with deliveries. We take logarithm

of yt and detrend using HP filter. Since inventory investment can be negative, the measurement

of ∆it is different. We define ∆it = (it − it−1) /xt. The other exception is the inventory-to-sales

ratio, it/xt, which is defined as level of inventory stock divided by level of sales. The data moments

corresponding to: (i) the relative volatility of production to sales, (ii) the relative volatility of inven-

tory investment to sales, (iii) the contemporaneous correlation between production with sales, (iv)

the contemporaneous correlation between inventory investment and sales, (v) the contemporaneous

correlation between the inventory-to-sales ratio and sales, (vi) the contemporaneous correlation be-

tween the change in inventories and production, (vii) the contemporaneous correlation between the

inventory-to-sales ratio and production, (viii) the first-order autocorrelation of production, (ix) the

first-order autocorrelation of the change in inventories, and (x) the first-order autocorrelation of the

inventory-to-sales ratio are then calculated based on the treated data accordingly. The persistence

of sales are estimated from detrended log (xt).

Table 1 summarize the key moments we focus on with GMM Newey-West standard errors in

parentheses. It reports the statistics for the manufacturing sector. We will mainly focus on Table

1 when explaining the results because they are related to production side, but the basic pattern is

similar across all sectors. As the first row of the table shows, the ratio of production volatility to

10The 1967−1996 raw data are measured as chained 1996 dollars to the SIC level, and data in 1997 and onwards are

measured as chained 2009 dollar to the NAICS level. After adjusting for deflation and possible small jumps because of

different estimation standards, we connect the two sub-sample periods.
11Blinder and Maccini (1991) detrend the data by regressing on a constant, a time trend, and an OPEC variable. They

find that the OPEC variable has a very small effect on the results. In our data, the persistence of linearly-detrended

sales is close to 1, suggesting a random walk process.
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sales volatility is larger than 1. The statistics are all significant at the 1% level. The second row of

Table 1 shows the relative volatility of inventory investment to sales. Although the ratio looks small,

once one notes that inventory investment is less than 1 percent of sales, it looks much bigger.

The third row shows the correlation of output and sales. They move with each other almost

one-to-one and the standard error is quite small. The fourth row displays the correlation between

inventory investment and sales. Inventory investment is procyclical – its correlation with sales is 0.3

in the manufacturing sector.12

The fifth row reports the correlation between the inventory-to-sales ratio and sales, which is

negative. The counter-cyclical inventory-to-sales ratio is also documented in Khan and Thomas

(2007, 2016), Wen (2011), and Kryvtsov and Midrigan (2013).

The sixth and seventh rows display the correlation between inventory investment and output, as

well as the correlation between inventory-to-sales and output. They follow the same pattern with

the fourth and fifth rows about the cyclicity of inventory investment and inventory-to-sales ratio.

The eighth row reports the autocorrelation of output. Its autoregressive coefficient is close to

that of sales. The ninth row displays the autocorrelation of inventory investment, which is quite

small compared to other macroeconomic aggregates.

The tenth row gives the autocorrelation of inventory-to-sales ratio. It demonstrates that inven-

tories not only adjust partially to the change in sales, but also the adjustment of inventory-to-sales

ratio to its steady state quite slow.

3 A Production-Cost Smoothing Model With Ambiguity Aversion

In this section, we will introduce our production-cost smoothing model with ambiguity aversion. We

first describe the basic model environment and then introduce Knightian uncertainty and ambiguity

aversion.

12The excessive variance ratio and positive correlation between inventory investment and sales over the busisness

cycle are widely documented in the literature using different filtering or detrending methods, including those mentioned

in the main text.
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3.1 The Basic Model Environment

The basic model follows the literature on the production-cost smoothing model (Blinder 1986 and

Eichenbaum 1989) closely.13 Our ultimate goal is to examine how uncertainty about the sales process

and the production cost interact with the preference for robustness and affects the joint dynamics

of production, inventories, and sales. Specifically, following Blinder (1986) and Eichenbaum (1989),

we assume that the production cost function of the representative firm is

C (yt) = αyΓtyt +
1

2
αyy

2
t , (1)

where yt denotes the production level for the firm in period t. The condition, αy > 0, indicates that

we assume the firm operates in a region of rising marginal costs. This function thus embodies the

production level smoothing motive. Γt is a stochastic shock to the marginal cost of output, so firms

have the incentive to raise production when this cost is low, provided the shock persists into the

future. That is, (1) also embodies the production cost smoothing motive. The firm observes the cost

shock before choosing the production plan.

The cost shock is generated by the AR(1) process

Γt+1 = ρΓΓt + wt+1, (2)

where ρΓ ∈ [0, 1) is the persistence coefficient and wt is an iid Gaussian innovation to the cost with

mean 0 and variance Ψ. Both the persistence of the shock ρΓ and the variance Ψ are unknown to the

econometrician and will be calibrated from the data. We model this cost shock as an unobservable

disturbance as the cost shock explanation works best this way in the the literature, while observable

cost shifters such as real wages and interest rates seem to play little role in inventory dynamics.14

The inventory holding cost function is

H (it) =
1

2
αii

2
t , αi > 0, (3)

where it denotes the inventory level for the firm at the end of period t. The coefficients αi and

αy govern the relative importance of the backlog cleanup motive and the production-smoothing

13Eichenbaum (1989) finds supportive empirical evidence for the production-cost smoothing model, in which inven-

tories serve to smooth production cost rather than as a buffer stock to production levels. Blinder (1986) and West

(1987) retain the assumption of convex adjustment cost functions and considered production-cost smoothing models

rather than the production-level smoothing models.
14See Ramey and West (1999) for a discussion.
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motive in the firm’s cost structure, respectively. We define αiy ≡ αi/αy to represent this relative

importance, as only this ratio plays a role in the model. In some studies, such as Kahn (1987),

Eichenbaum (1989), Ramey (1991), and Ramey and West (1999), the inventory holding cost takes

the form H(it) = αi (it−1 − αxxt)
2 /2, where xt is the amount of sales for the firm in t and αx > 0

governs the stockout avoidance motive, which induces the firm to hold inventories even without

production cost considerations. To keep our baseline model as simple as possible, we focus only on

the case αx = 0. In Section 6, we show that model uncertainty can provide a microfoundation for

the stockout avoidance motive.

The accounting identity relating output, sales, and inventories is

yt = xt + it − it−1, (4)

where xt is the amount of sales for the firm in t. Given sales and initial inventories, the firm makes

optimal production and inventories to minimize the following discounted expected cost:

v (it−1, xt,Γt) = min
{yt}

Et


∞∑
j=t

βj−t [C (yt) +H (it)]

 , (5)

subject to (1), (3), and (4).

To close the model, we need to specify the exogenous sales processes. The sales process is governed

by the AR(1) process

xt+1 = ρxt + εt+1, (6)

where ρ ∈ [0, 1) is the persistence coefficient and εt+1 is an iid Gaussian innovation to sales with

mean (1 − ρ)x and variance Ψ. Here, εt can be interpreted as the demand shock. In addition, we

assume corr (εt, wt) = 0, i.e., there is no correlation between the innovations to the cost and sales

shocks.

Finally, the timing of our model economy is as follows. In period t, a firm currently holding an

inventory stock it−1 observes the demand and cost shocks, produces an amount of yt of a single good,

and sells an amount of xt at the prevailing price. Production is instantaneous, and there is no delay

between production and sales. In this sense, inventory is not a speculative tool to meet unexpected

demand, but rather a buffer tool to smooth costly production. Finally, we assume that there are

also no intermediate goods in our model and all goods are finished goods or works in progress and

are free of physical depreciation.
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3.2 The RE Solution and Its Implications

Before we examine the effects of ambiguity aversion on the joint behavior of inventory and production,

we first present the analytical expressions for the optimal inventory and production rules under

RE. Under the RE assumption, firms have complete confidence and do not worry about model

misspecification. Using these expressions, we can clearly see how inventory and production respond

to the sales and the cost shocks, and thus explain why the RE version of the PCS model fails

to reproduce two stylized facts widely documented in the literature: (i) the relative volatility of

production to sales, and (ii) the positive contemporaneous correlation between sales and inventories.

Following the same procedure used in Eichenbaum (1989) and Ramey and West (1999), we can

derive the analytical inventory and production rules under RE,

it = λit−1

+


−λ︸︷︷︸
<0

xt + (1− λ)︸ ︷︷ ︸
>0

Et

 ∞∑
j=1

(
λ

R

)j

xt+j


︸ ︷︷ ︸

expected future sales


+


−λ︸︷︷︸
<0

Γt + (1− λ)︸ ︷︷ ︸
>0

Et

 ∞∑
j=1

(
λ

R

)j

Γt+j


︸ ︷︷ ︸
expected future cost shocks


, (7)

yt = (λ− 1) it−1

+


(1− λ)︸ ︷︷ ︸

>0

xt + (1− λ)︸ ︷︷ ︸
>0

Et

 ∞∑
j=1

(
λ

R

)j

xt+j


︸ ︷︷ ︸

expected future sales


+


−λ︸︷︷︸
<0

Γt + (1− λ)︸ ︷︷ ︸
>0

Et

 ∞∑
j=1

(
λ

R

)j

Γt+j


︸ ︷︷ ︸
expected future cost shocks


, (8)

where λ and λ−1R are the roots of X + R/X = 1 + R + Rαi/αy, with λ ∈ (0, 1). Inventory

and production decision rules can be decomposed into a linear combination of the lagged level of

inventories, current and expected future sales, and current and expected future costs.

It is clear from (7) and (8) that under RE, both inventory and current production increase with

expected future sales. The intuition behind this result is that when firms expect higher sales in

the future, they increase their current production and replenish inventories to smooth production

levels. From (7), we can also see that inventory depends negatively on the current level of sales.

This dependence captures the notion that, in the presence of increasing marginal costs, firms would

prefer to meet an additional increase in current sales by both reducing existing inventories by λ and

increasing current production by 1− λ.
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For the effects of the cost shock, we can also see from (7) and (8) that both inventory and current

production increase with expected future cost shocks. This motive for inventory accumulation reflects

the fact that firms will build up inventories (via production) in periods when costs are relatively low,

and meet future sales out of these stocks of inventories. In this sense, inventories can serve to

smooth production costs. In contrast, both desired inventories and production depend negatively on

the current cost shock. Other things being equal, firms will meet sales out of inventories rather than

producing new output in periods when marginal production costs are high.15

Given the sales and the cost shocks are generated by the AR(1) processes (2) and (6), the

coefficients on it−1, xt, and Γt are

yt = µiit−1 + µxxt + µΓΓt, (9)

it = λiit−1 + λxxt + λΓΓt, (10)

where

λi = λ ∈ (0, 1) , λx = −λ
R− ρ

R− ρλ
∈ (−1, 0) , λΓ = −λ

R− ρΓ
R− ρΓλ

< 0;

µi = λ− 1 ∈ (−1, 0) , µx = 1 + λx ∈ (0, 1) , µΓ = λΓ < 0.

Clearly, from (10), the net effect of the sales on inventories (λx) is negative. The negative effect of an

increase in current sales will be partly offset by the positive effect of this increase on expected future

sales. Similarly, the net effect of the cost shock on inventories λΓ is also negative and the negative

effect of an increase in current costs will be partly offset by the positive effect of this increase on

expected future costs. Using (9) the net effect of sales on production is µx = 1 + λx ∈ (0, 1). In the

presence of increasing marginal costs, firms would prefer to meet any additional increase in current

sales by both reducing existing inventories by λx and increasing current production by µx. Similarly,

the net effect of the cost shock on current production µΓ is also negative because the negative effect

of an increase in current costs will be partly offset by the positive effect of this increase on expected

future costs.

Equation (10) predicts that inventories are countercyclical since λx < 0, which is inconsistent with

empirical evidence. Inventory investment and sales are generally positively correlated (see Blinder

1991 and Ramey and West 1999). Furthermore, using the identity equation linking production, sales

15Given (1), it is straightforward to show that the marginal cost of production is αy (Γt + yt).
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and inventory investment, we can infer that the negative correlation between inventory investment

and sales predicted by the RE model will result in a relative volatility of production to sales smaller

than one. In our quantitative analysis in Section 4, we find that production is less volatile than sales

even with cost shocks, which is also inconsistent with the data. In this US economy production is

more volatile than sales in all major sectors and in most industries.

3.3 Introducing Model Uncertainty Due to Robustness

In this section, we model firms’ aversion to ambiguity about the true dynamics of sales and production

costs using the preference for robustness (RB) proposed by Hansen and Sargent (2007).16 Specifically,

we assume that firms do not know the true probability model generating the data, and are thus

concerned about the possibility that their estimated model is misspecified in a manner that is difficult

to detect statistically. In other words, the firms accept the approximating (reference) model governed

by (2) and (6) as the best estimated model using available information, but are still concerned that

it is misspecified. They therefore consider a range of models (i.e., the distorted model) surrounding

the reference model when computing the continuation payoff, and then make optimal decisions given

the worst-case scenario.

A tractable version of robust control considers the question of how to make decisions when the

agent does not know the true data-generating model and considers a range of models surrounding

the given approximating model, (2) and (6):

xt+1 = ρxt + εt+1 + ω1
t+1, (11)

Γt+1 = ρΓΓt + wt+1 + ω2
t+1, (12)

where ωt+1 ≡
{
ω1
t+1, ω

2
t+1

}
distorts the mean of the innovations to the sales and cost shocks, and

makes decisions that maximize expected total costs given this worst possible model (known as the

distorted model).17 To ensure that the true model, (2) and (6), is a good approximation when the

distorted model, (11) and (12), generates the data, we constrain the approximation errors by an

16Both a preference for “wanting robustness” proposed by Hansen and Sargent and “ambiguity aversion” proposed by

Epstein and his coauthors can be used to capture the same idea of the multiple priors model of Gilboa and Schmeidler

(1989).
17Formally, this setup is a game between the decision-maker and a malevolent nature that chooses the distortion

process ωt+1.
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upper bound η0:

E0

[ ∞∑
t=0

βt+1ωT
t+1ωt+1

]
⩽ η0. (13)

where E0 [·] denotes conditional expectations evaluated with the approximating model. The left side

of this inequality is a statistical measure of the discrepancy between the distorted and approximating

models. Note that the standard RE case corresponds to η0 = 0. In the general case in which

η0 > 0, an evil agent is given an intertemporal entropy budget η0 > 0 which restricts the set of

models that the agent views as plausible alternatives to the approximating model. Following Hansen

and Sargent (2007), we compute robust decision rules by solving the following two-player zero-sum

game: a minimizing decision maker chooses the optimal inventory and production decisions and a

maximizing evil agent chooses the model distortion process {ωt+1}:

v (ii−1, xt,Γt) = min
{ωj+1}

max
{yj}

{
− (C(yt) +H(it)) + βEt

[
1

2
θωT

t+1ωt+1 + v(ii, xt+1,Γt+1)

]}
(14)

subject to the distorted state transition equation (i.e., the worst-case model) (11) and (12), where

ϑ > 0 is the Lagrangian multiplier on the entropy constraint specified in (13) and controls how

bad the error can be. (13) and (14) are called “constraint preference” and “multiplier preference,”

respectively. As shown in Hansen and Sargent (2010), there is a one-to-one correspondence between

η0 in (13) and ϑ in (14).

Following Hansen and Sargent (2007, 2010), we use the risk-sensitivity operator, a special case

of recursive utility, to characterize the preference for robustness. The robust control version of the

inventory model proposed in Section 3.1 can be expressed as

v(ii−1, xt,Γt) = min
{yt}

{
1

2
αyy

2
t + αyΓtyt +

1

2
αii

2
t + βRtv(it, xt+1,Γt+1)

}
, (15)

subject to (2), (4), and (6), and the distorted expectation operator

Rt [v(it, xt+1,Γt+1)] = − 2

α
logEt

[
exp

(
−α

2
v (it, xt+1,Γt+1)

)]
, (16)

where α > 0 measures the degree of robustness in the model. The operator R distorts the usual

conditional expectation with a single parameter α > 0. The reason for the equivalence between

risk-sensitive and robust control is that imposing a constraint on conditional relative entropy is

equivalent to an agent having a preference that applies an exponential transform to the continuation
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value.18 Replacing with the form of R delivers the risk-sensitive evaluation used in control theory,

and the same results can be obtained as when solving the above max-min problem with a penalty

term defined in robust control theory, by setting α = −θ−1.19 If α = 0, the (15) specification reduces

to the standard RE expected utility specification, which is equivalent to solving a max-min problem

with θ diverging to +∞.

Denote st =
[
it−1 xt Γt

]T
as the state vector. Using (4), (15) can be rewritten as

v (it−1, xt,Γt) = min
{yt}

{
Ry2t + 2sTt Wyt + sTt Qst + βRt [v (it, xt+1,Γt+1)]

}
, (17)

subject to the state transition equations

st+1 = Ast +Byt + C−→ε t+1, (18)

where R = 1 + αy/αi, W =


1

−1

αy/αi

, Q =


1 −1 0

−1 1 0

0 0 0

, A =


1 −1 0

0 ρ 0

0 0 ρΓ

,

B =


1

0

0

, C =


0 0

ω 0

0 ωΓ

, and −→ε t+1 =

 εt+1

wt+1

.
To solve the linear quadratic robust control problem, we use the adapted ordinary optimal linear

regulator approach proposed in Hansen and Sargent (2007). The first-order conditions of the problem

requires us to solve an algebraic Ricatti equation for P :

P = Q+ βA′D (P )A− (βA′D (P )B +W )(R+ βB′D (P )PB)−1(βB′D (P )PA+W ′), (19)

where D (P ) = P + αPC (I − αC ′PC)−1 PC ′. Under some regularity conditions on the cost func-

tions, the Ricatti equation has a unique positive semidefinite solution.20

18Although risk-sensitive control and robust control lead to the same decision rules, they are based on different

preferences and give the decision different interpretations. Risk-sensitive control suggests an (enhanced) risk averse

agent, whereas robust control suggests an agent who is uncertain about the model that generates the data. These two

preferences can be quite different with respect to welfare calculations.
19See Online Appendix B for a proof on the equivalence between the risk-sensitivity specification and a more primitive

multiplier preference specification of the robust control problem.
20In addition to the usual detectability and stabilizability conditions, robust control requires that the evil agent’s

budget for misspecification is not too large (the breakdown condition). See Hansen and Sargent (2007) for details.
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Since the model with ambiguity aversion implies that firms behave as if they hold worst-case

beliefs, optimal outcomes are identical to that obtained in the model with expected cost minimizers

who are endowed with those worst-case beliefs. However, this observational equivalence does not

imply that the two models are identical – worst-case beliefs would not generally be invariant to

changes in policies or structural features of the economy.21

3.4 Robust Policy Rules and the Stochastic Properties of the Joint Dynamics of

Production, Inventories, and Sales

The following proposition summarizes the solutions to the optimization problem described by (31)-

(32).

Proposition 1 Given α, the production and inventory policy functions can be written as:

y∗t = µiit−1 + µxxt + µΓΓt, (20)

i∗t = λiit−1 + λxxt + λΓΓt, (21)

where λi = 1 + µi, λx = −1 + µx, µΓ = λΓ.

Proof. In the presence of RB, the PCS model cannot be solved analytically, so we solve the above

robust linear-quadratic problem numerically. Solving the RB-PCS model numerically yields the

optimal control (20). Combining the accounting equation, it − it−1 = yt − xt, with (20) yields (21).

We make several comments based on the solutions above to help the reader understand how

ambiguity aversion influences the joint dynamics of production, sales, and inventories. First, as a

general comment, note that as α → 0, Rt becomes the ordinary conditional expectation operator

E [·|It], and the robust policies, (20) and (21), reduces to the corresponding RE policies, (9) and

(10), in Section 3.2, respectively.

Second, given that the RB-PCS model can only be solved numerically, we cannot exactly inspect

the mechanism about how RB affects the joint dynamics of production, inventories and sales. We

instead use Figure 1 to illustrate how the response coefficients in the production and inventory

21Under worst-case beliefs policy could change the evolution of states, and therefore would change state-dependent

worst-case distortions.
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policies vary with the degree of RB (α) for different values of ρ when R = 1.01, ρΓ = 0.118, and

αi/αy = 0.552.22 Specifically, In the top of Figure 1, it shows how the three response coefficients,

µi, µx, and µΓ, in the production rule vary with α; the bottom of the figure shows how the three

response coefficients, λi, λx, and λΓ, in the inventory rule vary with α. It is clear from the top-second

panel of the figure that µx increases with α for different values of ρ. Under RB, we no longer have

explicit solutions; instead we have a numerical solution which is a linear combination of the lagged

level of inventory, the current sales, and the current cost shock. The coefficients, µx and µΓ, in the

production rule measure the net effects of current and expected future shocks. The intuition for the

result that µx increases with α is as follows. Firms would prefer to meet an additional increase in

current sales by increasing current production by µx = 1− λx and changing (reducing or increasing)

existing inventories by λx. Note that when the degree of RB is sufficiently strong, the value of µx is

greater than one and the value of λx is positive, which means that current production responds to

changes in current sales by more than one for one, and inventories and sales are positively correlated.

We can see from the bottom-second panel of Figure 1 that the response of inventory investment

to sales (λx) changes from negative to positive as α becomes large. Firms’ decisions are based on the

worst-case scenario (i.e., they fear that future sales might be higher than what the approximating

model generates, forcing them to incur high marginal cost), which generates precautionary behavior.

Consequently, under RB, both production and inventory are more sensitive to changes in sales. This

response pattern is often referred to as “making hay while the sun shines.” This mechanism allows

the model to generate a procyclical inventory behavior and more volatile production relative to

sales. Furthermore, this precautionary behavior due to ambiguity aversion endogenously generates

the stock-out avoidance motive even though we do not model a stockout avoidance motive explicitly

(such as imposing a non-negativity constraint on inventories or an “accelerator” term in the inventory

holding cost function).

Third, for the effects of the cost shock, we can see the right panels of Figures 1 that both µΓ

and λΓ are monotonically decreasing with α. If there is a reduction in current cost, firms build up

inventories (via production) more aggressively in periods when costs are relatively low, and meet

future sales out of these accumulated stocks of inventories. Again, the reason behind is that their

22In Section 4.1, we will discuss the choice of these preference and technology parameters and provide more details

about how to estimate the sales and cost processes using the U.S. data. The main results in this section are robust to

reasonable variation in these parameter values.
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decisions are based on the worst-case scenario (i.e., they fear that future production cost might be

higher than what the reference model generates), which also generates precautionary behavior.23

Finally, the fact that the absolute value of (λx) first declines and then increases suggests that

the variance of inventory investment is likely to follow the same pattern. The volatility of inventory

investment therefore has a non-monotonic relationship with the degree of ambiguity aversion – the

volatility first declines and then increases as the degree of ambiguity aversion rises. We will explore

this issue more in the quantitative section.

Using the numerical robust decision rules, we can readily compute the model’s predictions on

the key targeted moments of the joint dynamics of production, inventories, and sales. The following

proposition summarizes the main results.

Proposition 2 In the RB-PCS model, using (20) and (21), we can compute the following ten tar-

geted moments:

(i) the relative volatility of production to sales (µyx ≡ var(yt)/ var(xt)),

(ii) the relative volatility of inventory investment to sales (µix ≡ var(∆it)/ var(xt)),

(iii) the contemporaneous correlation between production with sales (ρyx ≡ cov(yt, xt)/
(√

var(yt)
√
var(xt)

)
),

(iv) the contemporaneous correlation between the change in inventories and sales

(ρix ≡ cov(∆it, xt)/
(√

var(∆it)
√
var(xt)

)
),

(v) the contemporaneous correlation between the inventory-to-sales ratio and sales (ρi/x,x ≡

cov(it/xt, xt)/
(√

var(it/xt)
√

var(xt)
)
),

(vi) the contemporaneous correlation between the change in inventories and production (ρiy ≡

cov(∆it, yt)/
(√

var(∆it)
√
var(yt)

)
),

(vii) the contemporaneous correlation between the inventory-to-sales ratio and production (ρi/x,y ≡

cov(it/xt, yt)/
(√

var(it/xt)
√
var(yt)

)
),

(viii) the first-order autocorrelation of production (ρy ≡ cov(∆yt,∆yt−1)/ var (∆yt)),

(ix) the first-order autocorrelation of the change in inventories (ρi ≡ cov(∆it,∆it−1)/ var (∆it)),

(x) the first-order autocorrelation of the inventory-to-sales ratio (ρi/x ≡ cov(it/xt, it−1/xt−1)/ var (it/xt)).

Proof. See Online Appendix C for the detailed expressions for the first three targeted moments.

Note that there are no explicit expressions for some moments.

23Note that Figure 1 shows that the coefficients of the decision rules are not sensitive to the persistence of sales given

plausible degrees of ambiguity aversion.
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In the next section we will quantitatively evaluate the model’s ability to match these ten features

of the data. In Section 7.1, we also derive some analytical solutions to the model without ambiguity

aversion and robustness to help explain why the basic model fails.

4 Model’s Quantitative Implications

In this section, we estimate and calibrate the model parameters and quantitatively examine the

model’s ability to fit the data.

4.1 Estimating and Calibrating the Parameters

There are four key parameters we need to pin down in this model: the degree of ambiguity aversion

(α), the persistence of cost shock (ρc), the volatility of the cost shock innovation(Ψ), and the relative

importance of the inventory holding cost (αiy). We jointly estimate these parameters to match the

ten moments (i) to (x) defined in the above proposition. The estimation is based on a Generalized

Method of Moments (GMM) approach. (See Online Appendix D for details.)

The estimated values of the parameters are reported in the top panel of Table 2. As the table

shows, the estimated values of the parameters are similar under these two approaches, except for the

persistence of the cost shock. The optimal weighting matrix estimate of the persistence coefficient

of the cost shock is a bit lower than the values estimated in Eichenbaum (1989), while the estimate

with the identity matrix is close to that in Eichenbaum (1989). The GMM estimate of the relative

importance of inventory holdings is within the range summarized in Ramey and West (1999). The

bottom panel of Table 2 compares the RB model’s performance on the ten moments with two RE

models with different calibration strategies. We first obtain the RE model-implied moments by

setting the RB parameter to be zero. (All the other parameter values are set to be the same for

both the RB and RE models.) We then do a validation test denoted by “the RE model∗” that is

estimated to target the same moments in the data.

To provide a meaningful interpretation for the ambiguity aversion and robustness parameter (α),

we follow Anderson et al. (2003) and Hansen and Sargent (2007) by calculating the detection error

probability (DEP). (See Online Appendix E for the details.) The resulting DEP is 0.22, which

means that there is 22 percent chance that a likelihood ratio test will improperly select between the

approximating and distorted models. This value is within the reasonable range of the DEP in the
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literature. Hansen and Sargent (2007) argue that the DEP values between 0.1 and 0.3 are plausible.

In the recent studies, Djeutem and Kasa (2013) show that to match the observed volatility of six U.S.

dollar exchange rates (the Australian dollar, the Canadian dollar, the Danish dollar, the Japanese

yen, the Swiss franc, and the British pound), the detection error probability should be set between

7.5 percent to 13.1 percent. In contrast, Kasa and Lei (2017) uses values above 40 percent in their

models. As a higher DEP means a lower degree of model uncertainty, it suggests that our model

does not require unreasonable fears of model misspecification to fit the data.

To further help understand how α influences the key moments, Figure 2 illustrates how the

selected six moments vary with α. The figure shows that the degree of ambiguity aversion has a

non-monotonic effect on the relative volatilities of production and inventory investment (the top-left

two charts), and also it can alter the sign of the correlations for inventory investment and inventory-

to-sales ratio with sales. We have briefly discussed these using the decision rules in the previous

section, but now we will dig in deeper.

First, as discussed in the previous section, the U-shaped relationship between µix and α (the

top-second panel) is mainly driven by the effect of α on λx. As α increases, the absolute value of λx

first declines and then rises (see Figure 1), which makes inventory investment less sensitive to sales

fluctuations for moderate values of α. As this effect dominates other effects (such as those coming

from changes in λi and λΓ), µix first declines and then increases with α.

The U-shaped relationship between the volatility of inventory investment and the degree of am-

biguity aversion also helps explain a similar U-shape between µyx and α (the top-left panel of Figure

2). We can use the identity equation (4) to decompose µyx into

µyx =
var(∆it)

var(xt)
+ 2

cov(∆it, xt)

var(xt)
+ 1. (22)

The upper panel of Figure 3 shows that the initial decline in the variance ratio var(yt)/ var(xt) (when

α is small) is mainly driven by the component var(∆it)/ var(xt), while the latter increase (when α is

relatively large) is a joint effect of both cov(∆it, xt) and var(∆it)/ var(xt), which both increase with

α on the right side of the figure.

Turning to the top-right panel of Figure 2, two factors help explain why an increase in α could

switch the sign of the correlation between inventory investment and sales. The lower panel of

Figure 3 plots how different parts of this correlation changes with α based on the definition ρix =

var(∆i, x)/ (σ∆iσx). Notice that σx is given so we only plot the other two components. The change
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in the sign of the correlation is due to the same change in the covariance term. As we explained in

the previous section, this sign switch is due to the change in λx, which flips from negative to positive

as α rises. Furthermore, the jump in the magnitude reflects the fact that both | cov(∆it, xt)| and σ∆i

drop to zero but the latter declines faster than the former, making the ratio jump up when the sign

switches. The effect of α on the correlation between inventory investment and output also follows

the same logic.

For the correlation between the inventory-to-sales ratio and sales, the sign of inventories generated

by the model matters. In the RE case, when there is a positive cyclical shock to sales, the model

predicts that inventories are used as a buffer stock and will be depleted, which implies countercyclical

inventory investment. As we will show in Section 6, without the stock-out avoidance assumption

the RE model generates negative inventories in most periods. As the reduction in inventories is less

proportional than the increase of the sales level, we find that the inventory-to-sales ratio actually

increases after the shock, suggesting a procyclical inventory-sales ratio. As shown in the left panel of

Figure 4, after a positive sales shock in the middle of periods, the level of sales increases, while that

of inventories decreases under a RE-PCS model, and the overall inventory-sales ratio increases. The

right panel of Figure 4 clearly shows that a positive sales shock increases the firm’s inventories under

RB, though the increase is proportionally less than the increase of the sales level, and the inventory-

to-sales ratio displays countercyclicality. Here the bottom line is, the presence of RB reverses the

cyclicality of inventory investment without making the firm accumulate too much inventory, and

preserves the right signs of inventories simultaneously. These results guarantee a right sign on the

correlation between the inventory-to-sales ratio and sales, as well as that on the correlation between

the inventory-to-sales ratio and output.

Finally, ambiguity also decreases the persistence of the inventory-sales ratio, as now the adjust-

ment of inventories is faster.

4.2 Evaluation of Models’ Key Performance

We now evaluate our RB model’s quantitative ability to fit the data, and compare it explicitly to the

standard RE model. We report the results in the lower panel of Table 2. The first column reports

the empirical moments over the 1967 − 2018 period, the second column reports the RB model’s

predictions, the third column reports the RE model’s predictions, and the fourth column reports the
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RE validation test results.

It is clear from the last three columns of Table 2 that the RB model did a better job than the

two calibrated RE models along most of the key moments. Specifically, the first row of the lower

panel compares the different models’ predictions for the relative volatility of production to sales. It

shows that the RB model generates a relative volatility of production to sales significantly above 1

as in the data, which solves the production-smoothing puzzle. In contrast, both RE models predict

a value less than 1. As reported in the previous section, the required degree of model uncertainty, as

measured by the DEP, is 0.22, which means that firms in our RB model economy face a probability

of 22% of being unable to distinguish the distorted model from the approximating model. We have

argued above that this value is reasonable.

The second row of the lower panel compares the models’ predictions for the relative volatility of

inventory investment to sales. It is clear from this row that the results of the RE and RB models

are close. As we explained in the previous section, the RB model has the potential to reduce the

volatility of inventory investment because the response of inventory investment to sales (λx) increases

towards zero when the degree of RB (α) increases.

The third and fourth rows compare the models’ predictions for the correlations between inventory

investment and the ratio of sales to production. As explained before, both the PS and PCS models

fail to match this fact; the RE model predicts the wrong sign of the correlation between inventory

investment and sales. In contrast, the RB model generates the correct sign and a size very close to

the empirical counterpart. Again, the change from a negative sign to positive relies on the fact that

an increase in ambiguity aversion leads to production changing more than sales following a demand

shock and thus causes inventory investment to move in the same direction as sales.

In the fifth and sixth rows, our RB model produces a countercyclical inventory-to-sales ratio,

while the RE model does not. In the RB model inventories move less than one-for-one with sales. In

contrast, in the RE model, production can not respond to sales adequately. Without incorporating

the stockout-avoidance constraint, it generates negative inventories and a procyclical inventory-to-

sales ratio.

The seventh row compares the correlation between sales and output. The correlation is slightly

higher under RB since production responds more aggressively to sales. Both models produce a

reasonably high correlation between the two aggregates, considering the small portion of inventories
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in the economy.

Eighth and ninth rows are about the autocorrelations of output and inventory investment. As

output and inventories become more volatile and are more responsive to the sale shock, their auto-

correlations naturally decrease. The RB model hence generates a smaller ρi, which is closer to the

empirical counterpart; and a smaller ρy, which is somewhat lower than in the data.

Finally, as noted in Coen-Pirani (2004), the inventories-to-sales ratio for finished goods is per-

sistent over the business cycle. It turns out that RB increases inventories proportionally more than

the reduction of inventories under RE, so the adjustment speed of the inventory-to-sales ratio under

RB is comparatively faster. The persistence of inventory-to-sales ratio is therefore lower under RB.

Nevertheless, both models deliver a highly persistent inventory-sales ratio.

5 Extension to Endogenous Sales

In this section, we extend our benchmark model with exogenous sales to a model with endogenous

sales and prices. We then show the main results obtained in our benchmark model still hold in

this extension, and this model also outperforms the corresponding RE model both qualitatively and

quantitatively.

5.1 The Model with Ambiguity Aversion and Endogenous Sales

In this section, we assume that sales is now endogenously determined. Specifically, following Bils

and Khan (2000), we assume that for a given price, the amount of sales is an increasing function of

its available stock of products (with an elasticity of ϕ ∈ (0, 1]):

xt = d(pt)a
ϕ
t , (23)

where d (·) is the demand function and at = it−1+yt is the stock of products available for sale at time

t.24 Firms optimally choose the price of product, pt, to maximize its expected profits. When ϕ = 1,

the specification is consistent with a competitive market that allows for the possibility of stockout,

as firms cannot sell more than its inventories remained from the previous period plus current output.

The demand for the single good, xt, is determined by

d (pt) = A0 +A1pt + vt, (24)

24Note that it−1 is end-of-period inventory held at time t− 1.
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where vt is a demand shock. vt follows an AR(1) process:

vt+1 = ρvvt + Cεεt+1. (25)

where εt+1 is an iid Gaussian innovation with mean 0 and variance 1, and Cε is a positive constant. As

in the benchmark model, the representative firm faces both production costs and inventory holding

costs:

C (yt, it,Γt) = αyΓtyt +
1

2
αyy

2
t +

1

2
αii

2
t , αi, αy > 0, (26)

with

Γt+1 = ρΓΓt + Cwwt+1, (27)

where wt+1 is an iid Gaussian innovation with mean 0 and variance 1, and Cw is a positive constant.

Following the same argument as in the benchmark model, to incorporate Knightian uncertainty

due to ambiguity aversion we assume that the firm has concerns about model misspecification about

both demand and cost shocks, vt and Γt, and seeks robust decision rules. When the firm optimally

chooses its price pt and production yt subject to Knightian uncertainty, the problem can be formulated

as the following two-player zero-sum game:

min
{ωt+1}

max
{yt, pt}

E0

{ ∞∑
t=0

βt
[
ptxt − C(yt, it,Γt) + βηω2

t+1

]}
, (28)

subject to (4), (23), and

Γt+1 = ρΓΓt + Cw

(
wt+1 + ω1

t+1

)
, (29)

vt+1 = ρvvt + Cε

(
εt+1 + ω2

t+1

)
, (30)

with it−1 is given and η > 0 is the penalty coefficient. By choosing ωt+1 =
(
ω1
t+1, ω

2
t+1

)
the hypo-

thetical ‘evil agent’ selects the worst-case model. By choosing the optimal price and output, the

ambiguity-averse firm pins down current sales and revenue.

We linearize the above model around the steady state and solve for linear decision rules. The

key distinction between our benchmark model with exogenous sales and this model with endogenous

price and sales is that in this model we need to linearize the revenue function d (pt) a
ϕ
t around the

steady states of price, inventories and production, and then we can transform it into a linear quadratic

regulator problem. Denote st =
[
1 it−1 Γt vt

]T
as the state vector and ut =

[
yt pt ωt+1

]T
as the control vector. We then get the following lemma:
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Lemma 3 Given (4), (23), (29), and (30), (28) can be rewritten as:

V (st) = min
{ωt+1}

max
{yt, pt}

{
Ru2t + 2sTt Wut + sTt Qst + βRtV (st+1)

}
, (31)

subject to the state transition equations:

st+1 = Ast +But + C−→ε t+1, (32)

where the elements in Q, W , R, A, B, C are specified by the steady state values of the model variables.

Proof. See Online Appendix F for the details.

The following proposition summarizes the solutions to the above optimization problem.

Proposition 4 Given α, the production and inventory policy functions with endogenously sales can

be written as:

y∗t = constant0 + µiit−1 + µΓΓt + µvvt, (33)

p∗t = constant1 + φiit−1 + φΓΓt + φvvt, (34)

i∗t = constant2 + λiit−1 + λΓΓt + λvvt, (35)

where constant0, constant1, and constant2 are some constants, and µ, φ and λ are the corresponding

response coefficients.

Proof. As mentioned in Section 3.3, solving the robust dynamic programming numerically yields

the optimal controls (33) and (34). Combining the accounting equation, it− it−1 = yt−xt, with (33)

yields (35).

As in the benchmark model, given the complexity of the decisions, we cannot learn much from

them. In the next subsection we will quantitatively evaluate the model’s implications on explaining

the same key dimensions of the joint dynamics of production, inventories and sales.

5.2 Quantitative Evaluation

In Bils and Khan (2007), the empirically estimated elasticity ϕ ranges from −0.049 to 0.486 in the

six manufacturing industries: tobacco, apparel, lumber, chemicals, petroleum, and rubber. The

average of ϕ is approximately 0.1, so we choose that value. We construct monthly output using the

inventories and sales data as before, detrend it using the HP filter, and take the exponential of the
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cyclical component. We also take logs of Consumer Price Index (CPI), sales, inventory, and then take

exponential of the HP-filtered cycles. This provides us with stationary positive aggregate numbers

that facilitates our calibration. In the next step, we regress detrended sales to scaled detrended

stocks (st/a
ϕ
t ) and price (pt) to obtain the demand function d (pt) and recover the values of A0 and

A1. The volatility of the demand shock εt can also be obtained at the same time. Note that the

first-order conditions with respect to yt and pt can be used to derive the following two equations:

Et

[
ptst

(it + yt)MCt
+

it + yt − βMCt+1

MCt

(
ϕst

it + yt
− 1

)
− 1

]
= 0, (36)(

1 +
A0 +A1pt + εt

A1

)
pt = βEt [MCt+1] , (37)

where MCt is the time-t marginal cost, which can be utilized to obtain the steady state values of

the states and controls in our model economy. Using the the steady states values of variables, the

coefficient matrices in Lemma 1 can be readily computed. Finally, solving the robust LQ problem

quantitatively generates the robust decision rules: (33), (34), and (35).

Using the robust decision rules, we can do the same GMM estimation as in our benchmark model

to obtain the remaining parameters, {ρc, αi, αy, α}.25 The model comparisons are presented in Table

3. We can see from the table that the RB-PCS model with endogenous sales matches the data

reasonably well. The calibrated detection error probability (DEP) is 0.08, which means that there

is a 8 percent chance that a likelihood ratio test will improperly select between the approximating

and distorted models. The third column of the table compares the robust control model to the

standard rational expectations version when we set α = 0; the RE-SOA model still underperforms

the corresponding RB model along several dimensions. The fourth column is the validation test

calibrated without ambiguity.

With endogenous sales, the mechanism of how RB affects the model’s dynamics resembles but

is not the same as that in the exogenous-sales model. We first examine the robust production rule,

(33). A positive demand shock vt in the sales function will give rise to higher sales; as a consequence,

production will be increasing in vt. Concerns about the specification of vt reinforces this effect and its

response coefficient is therefore larger than in the RE model. Likewise, fears of a higher current cost

shock reduces the response coefficient on Γt (with a greater absolute value). Lower stocks available

for sales further induce fears of lower sales so production decreases further compared with the RE

25Note that the steady state values of the model change with parameters. See Online Appendix G for discussion.
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case. These two effects jointly contribute to a higher production volatility.

Second, the price responds to both the demand and cost shocks positively in the price rule (34).

Profit-maximizing firms increase price in anticipation of shortages due to higher demand or lower

production, and this price effect partially offsets the rise and reinforces the fall in sales, respectively.

Under RB, firms increase the price more in response to an increase in demand and increase less in

response to a cost shock. The latter is because that fears of lower production also induces fears

of lower sales. Robust price rules therefore contributes to a less volatile sales during expansions as

well as in recessions. In the end, output as well as sales are still more volatile under the RB model,

and they generate a output-sales variance ratio greater than 1. The cyclical behavior of inventory

investment and inventory-sales ratios are also consistent with the empirical counterparts.

As documented in Khan and Thomas (2007), cyclical fluctuations in inventory investment do not

substantially raise the variability of GDP because they lower the variability of final sales as a general

equilibrium effect. Here final sales can also be endogenously moderated due to the pricing effect

in expansions and recessions. However, the price effect does not reduce the RB model’s ability to

match the empirical evidence. As reasoned above, output as well as inventory investment are more

volatile in our RB model. The main disadvantage of the RE model is that it can only generate a

procyclical or weakly countercyclical inventory-to-sales ratio, and the persistence of the inventory-to-

sales ratio also falls short of the empirical counterpart, as shown in the sixth, seventh and tenth rows

of Table 3. Under RB, the volatility of sales also increases due to the more responsive production,

though the volatility of production is still greater than that of sales. The firm relies more on current

production to meet sales, instead of holding more inventories. Inventory investment then increases

more slowly than the increase of sales in expansions, and dropped less quickly than the decrease

of sales in recessions. Inventories can thus move less proportionately than sales, which leads to a

lower adjustment rate of inventories relative to sales and a less persistent inventory-to-sales ratio.

Also note that in the validation test, the firm has some inventory holding motive, yet the fraction of

inventory over sales is almost independent of the sales process, and displays little serial correlation.
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6 Comparison With the Stockout Avoidance Motive

6.1 How to Endogenize the Stockout Avoidance Motive from the Perspective of

Model Misspecification?

In this section, we compare our RB-PCS theory with the stockout avoidance motive widely examined

in the literature on inventories. While our model shows that the uncertainty due to concerns about

model misspecification can significantly improve the PCS model’s predictions on these important

aspects of the data, Wen (2005) shows that incorporating the stockout avoidance motive also helps

explain the data along several dimensions.26 The way Wen (2005) models the stockout avoidance

motivation is to assume that firms cannot allow inventory to fall below zero (i.e., it ≥ 0), which

means firms want to avoid the situation where they must produce more to meet current demand.

Our model with model uncertainty can endogenously generate this outcome: as firms have stronger

concerns about model misspecifications, their production decisions become more responsive to both

demand and cost shocks and therefore accumulate more inventories; consequently, it is more likely to

avoid the negative inventory levels (although the model does not explicitly impose any restrictions on

negative inventories).27 Sarte et al. (2015) show that variation in the discount rates in consumers’s

utility function plays a key role in explaining the shifts in U.S. business cycles observed after the

mid-1980s. The estimated high degree of substitutability between stages of production delivers an

SOA motive. Fluctuations in their model alter intertemporal valuations and therefore are more apt

to generate substantial investment. In our paper, in contrast to the SOA literature, firms are overly

pessimistic about the demand and cost shock processes because they take the worst-possible case

into account, and therefore reinforces intertemporal substitution.

6.2 Quantitative Analysis for the Endogenous SOA Mechanism

In this section, we first provide details about how to simulate the fraction of inventory stocks given

different degree of model uncertainty. Given different values of the RB parameter α and other set

of parameters calibrated in the benchmark model, we simulate the model 1000 times and calculate

26The discussion on the stockout avoidance motive goes back to Kahn (1987) and Maccini and Zabel (1996).
27Note that allowing for negative inventory stocks need not require that stocks are actually negative (which is of

course impossible); rather, one can interpret a negative inventory stock as indicating future orders in excess of current

stocks.
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the average fraction of negative inventories in all periods. Like in the previous sections, in each

simulation path we again simulate according to (2) and (6), and use the numerical decision rules,

(20) and (21) to obtain the level of inventory stocks. Particularly, we set the initial value of inventory

stocks here at the constant ones. Also, we do not add back the trend of log sales when calculating

the level of sales, because otherwise when taking exponential it will dominate the zero mean cost

shocks and make the signs of sales positive. The upper-right panel of Figure 5 plots the average share

of negative inventory based on simulated series for different values of the RB parameter, α.28 It is

clear from the figure that our calibrated plausible values of α can help generate positive inventories.

As the upper-right panel of Figure 5 shows, the share of negative inventory is very high if α = 0

(the RE model). As α increases, the fraction of negative inventory holdings starts to decrease, though

initially it declines very gradually. As α approaches the threshold that leads the response of inventory

to sales (λx) to change from negative to positive (see the bottom-second panel in Figure 1), the share

of negative inventory declines rapidly to a level close to zero. If firms have stronger concerns about

model misspecification, they adjust their production more aggressively in response to sales changes

and therefore endogenously avoid negative inventory stocks. It is also clear from the lower-right

panel of Figure 5 that the (mean) stock of inventories also increases with α. When α is sufficiently

large, the level of inventories is always positive. This result has the flavor of precautionary behavior;

with higher degrees of ambiguity aversion, firms naturally hold buffer stocks of inventory and avoid

stockouts, even though having a negative inventory is not explicitly punished.

In the literature such as Kahn (1987), Eichenbaum (1989), Ramey (1991), and Ramey and West

(1999), there is another way to explicitly model the stockout avoidance motive in the PS and PCS

models. Specifically, they assume that the inventory holding cost takes the following form:

H(it) =
1

2
αi (it−1 − αxxt)

2 , (38)

where it−1 is the inventory level at t − 1, xt is the amount of sales in t, and αx > 0 governs the

stockout avoidance motive. This motive induces the firm to hold inventories even without production

cost considerations, and (38) embodies both inventory holding and backlog costs. If αx = 0, it can

be interpreted as an inventory holding cost function. In contrast, if αx ̸= 0, the so-called accelerator

motive takes effect and this function reflects stockout (backlog) as well as inventory holding costs,

28The average is based on 1000 simulations. We have checked that increasing the number of simulations does not

change the results.
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and thus captures a revenue-related motive for holding inventories (as αx increases, stockout costs

rise relative to backlog costs). Stockout costs arise when sales exceed the available stock. In other

words, the higher the stock of inventories, the less likely is a stockout and the lower are stockout

costs.

The upper-left panel of Figure 5 plots the average share of negative inventory based on simulated

series for different values of the degree of the SOA motive, αx. Other parameters are set at the values

calibrated to match the data without ambiguity. We can see from this figure that if αx is sufficiently

large (αx > 1.60), the average share of negative inventory in the model with the SOA motive drops

to zero. In addition, it is also clear from the lower-left panel of Figure 5 that the (mean) stock of

inventories also increases with αx. When the accelerator motive is operative, inventories will initially

rise along with sales when there is a positive demand shock, suggesting that production rises more

than sales and is more variable. One can obtain procyclical movements and an output-sales variance

ratio above one through this specification. More specifically, if we let production cost be zero, mute

the cost shocks and leave the inventory holding cost as the entire cost, the optimal inventory stock

in period t will be it = αxEt [xt+1]. Inventories will covary positively with expected sales, and thus

with serially correlated sales themselves. However, in Ramey and West (1999), the median estimate

of αx varies from 0.4 (Ramey 1991) to 1.15 (Eichenbaum 1999) using two-digit manufacturing data

from the US, which are obviously below the required critical value to generate nonzero inventory

stocks in the model.

The calibrated results using the SOA model are presented in Table 4. The GMM estimation

that best fits the data gives a threshold of αx = 2.09. It requires firms to hold a large amount of

inventories relative to sales at the beginning of the period, and the SOA model-generated data still

falls short of the empirical counterpart. For example, with such a large value of αx, both output and

inventory investment fluctuate too much, with an autocorrelation of the latter much larger than the

empirical counterpart.

7 Further Discussions

In this section, we will further explain why the RB model outperforms the RE model. First, we will

show that the RE model cannot generate a positive correlation between inventory investment and

sales. In addition, we will examine the behavior of production and inventories before and during the
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Great Moderation (GM) in the US economy.

7.1 Further Inspection of the RE Model’s Prediction for the Inventory-Sale Cor-

relation

Under RE, the inventory policy, (10), can be written as a combination of two AR(2) processes:

it = λx
εt

(1− ρ · L)(1− λi · L)
+ λΓ

wt

(1− ρΓ · L)(1− λi · L)
, (39)

which shows that the stochastic properties of inventories are governed by the following two channels:

i) ρ and ρΓ, which govern the external propagation mechanisms, and ii) λi = λ1, which is an internal

and endogenous propagation mechanism determined by the relative importance of the production

smoothing motive to the backlog cleanup motive, αi/αy. Also note that λ is determined by R

and αi/αy, but is independent of the values of ρ and ρΓ. In addition, as can be seen in (10) and

(39), adding a cost shock does not change the response of the current inventory stock to sales and

lagged inventory stocks, so it does not change the covariance of inventory investment and sales.

Accordingly, compared with the production-level smoothing model, adopting the production-cost

smoothing specification changes the value of var(∆it), but has no effect on the inventories-sales

correlation; as a result, moderate cost shocks cannot generate the observed higher variance ratio of

production to sales. Finally, since λx < 0 in this case (R− ρΓ > 0), the contemporaneous covariance

of inventory and sales will always be negative, independent of the cost shock process. In addition,

the production policy, (9), implies that production is negatively correlated with the lagged level of

inventories and is positively correlated to the current level of sales. If firms have plenty of inventory

stock from the last period, they do not need to increase current period production. Similarly, if

demand is high in the current period, firms will produce more.

The fourth column in the lower panel of Table 2 shows a validation test based on the RE model.

Specifically, we estimate the three unknown parameters, Θ = {ρc, Ψ, αiy}, using the two-step GMM

procedure, so that the RE model-generated moments matches the ten moments (from (i) to (x))

defined in Proposition 2 of Section 3.4 as closely as possible. We choose these moments as our targets

as they capture important features of the joint dynamics of production, inventory, and sales. One

may note that if Facts (iii) and (v) are true given Fact (ii) (i.e., inventory investment is procyclical,

while the inventory-to-sales ratio is countercyclical, inventory investment is much less volatile than

sales), it implies that log (i) is less volatile than log (x). This is not equivalent to saying that Fact
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(ii) is true, for log (i) can move faster than log (xt) with inventory investment is still much less

volatile. The bottom line is, the RB model matches the very low volatility of inventory investment

relative to sales. On the other hand, the RE model fails to match the data well on the overall

performance. We report the results in Table 2. The upper-third column gives estimated parameters.

In the lower panel, the second column reports the empirical evidence during the 1967− 2018 period,

and the third column reports the RE model’s predictions. It is clear from the table that the RE

model can merely generate an output-sales variance ratio around 0.98, while inventory investment

is countercyclical and the inventory-to-sales ratio is procyclical. All these results are far apart with

the empirical evidence. We then examine if the RB model can outperform the original RE model. A

similar graph like Figure 2 shows that the RE model’s performance improves when the degree of RB

strengthens (i.e., α rises). Like in the previous figure, as the degree of RB rises, the firm’s optimal

production and inventory decisions generate a higher output-sales variance ratio, the comovement of

inventory investment and the inventory-to-sales ratio switches signs and gets closer to the empirical

counterpart, and the inventory-to-sales ratio is also persistent. The values of remaining moments are

also reasonably close.

7.2 The Great Moderation

Beside the above stochastic properties, the literature on inventory dynamics also finds that the rela-

tionship between production, inventories and sales has changed somehow during the Great Modera-

tion (GM). For example, Sarte et al. (2015) show that variations in the discount rates in consumers’s

utility function plays a key role in explaining the shifts in U.S. business cycles observed after the

mid-1980s. The estimated high degree of substitutability between stages of production, similar to

Bils and Kahn (2000), delivers an SOA motive. Fluctuations in the model alter intertemporal valu-

ations and therefore are more apt to generate substantial investment. In our paper, in contrast to

the SOA literature, firms are overly pessimistic about the cost shock process and therefore reinforces

intertemporal substitution too. Furthermore, the shift of comovement properties and the relative

volatilities of the data prior to and after 1984 can be explained by changes in the degree of RB and

the amount of model uncertainty faced by firms. With more and more information, agents may be

better able to draw inference about the underlying model-generating-process from a narrower set of

surrounding models, hence reducing the degree of model uncertainty.

32



To investigate into this channel, we estimate our endogenous-sales model over the two separate

subsamples split in 1984, targeting the data moments in each subsamples respectively. The whole

data sample covers 1967-2007. The four chosen moments are those mentioned in Sarte et.al (2015): (i)

the relative standard deviation of output to sales (σyx ≡ std (yt) / std (xt)), (ii) the relative standard

deviation of inventories to output (σiy ≡ std(it)/ std(yt)), (iii) the relative standard deviation of

inventory-to-sales ratio to output (σi/x,y ≡ std(it/xt)/ std(yt)), and (iv) the correlation between

inventory-to-sales ratio and output (ρi/x,y ≡ cov(it/xt, yt)/
(√

var(it/xt)
√
var(yt)

)
). Correlations

and standard deviations are calculated using monthly data and HP filtering as in Kryvstov and

Midrigan (2013). Table 5 reports the results. The inventory-sales ratio became less countercyclical

in the second sub-period, the Great Moderation period, consistent with the results of Kryvtsov and

Midrigan (2013). In addition, we also see from the table that inventory-output variance ratio is

higher during the GM period. The calibrated DEPs are 0.02 for the period before 1984 (the first

sub-period) and 0.22 for the period after 1984 (the second sub-period). These results indicate a

decreased amount of model uncertainty during the GM period.

Despite the fact that output volatility decreased during the GM, sales volatility decreased even

further, contributing to a slightly increased output-sales ratio after the shift. This result also suggests

that fundamental uncertainty (risk) is decreased. Note that the fundamental uncertainty may lead to

Knigtian uncertainty when agents are ambiguity averse, as shown in (29)-(30). In contrast, the deep

parameter α has increased from 208.6 before the GM period to 379.0 during this period, indicating

that the degree of robustness has increased. To sum up, the overall amount of model uncertainty

decreased, reducing the sensitivity of production to the demand and the cost shocks, and resulting

in more inventory holdings as a buffer stock. This reduction leads to the increased relative volatility

of inventories to output and the less countercyclical inventory-to-sales ratio during the GM period.

8 Conclusions

In this paper, we construct a version of the PCS model with ambiguity aversion to study the joint

dynamics of production, inventories, and sales. Our model can explain ten facts that previous

studies find difficult to account for simultaneously. We also show that the stock-out avoidance

motive (Kahn 1987) emerges endogenously in our model due to the ambiguity-aversion-induced

precautionary behavior. Our analysis shows that allowing for a moderate degree of ambiguity aversion
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enables a standard linear-quadratic framework based on Blinder (1986), Eichenbaum (1989), and

Ramey and West (1999) to account for the production and inventory dynamics reasonably well.
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Figure 2: Changes of Moments When Varying the Degree of Model Uncertainty
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Figure 3: Decomposition of µyx and µix
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A Sales Shock
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Table 1: The Joint dynamics of Inventories, Production and Sales

Whole Sample Before Financial Crisis

1967− 2018 1967− 2007

Manufacturing Sector

Relative Volatility of Production to Sales (µyx) 1.10 (.0151) 1.10 (.0192)

Relative Volatility of Inventories to Sales (µix) 0.029 (.0047) 0.033 (.0059)

Correlation between Ouput and Sales (ρyx) 0.99 (.0018) 0.99 (.0021)

Correlation between Inventory Investment and Sales (ρix) 0.30 (.0543) 0.29 (.0551)

Correlation between Inventory-to-Sales Ratio and Sales
(
ρi/x,x

)
−0.47 (.0621) −0.49 (.0774)

Correlation between Inventory Investment and Output (ρiy) 0.42 (.0478) 0.42 (.0503)

Correlation between Inventory-to-Sales Ratio and Output
(
ρi/x,y

)
−0.46 (.0634) −0.48 (.0798)

Autocorrelation of Output (ρy) 0.88 (.0190) 0.86 (.0226)

Autocorrelation of Inventory Investment (ρi) 0.26 (.0580) 0.25 (.0668)

Autocorrelation of Inventory-Sales Ratio
(
ρi/x

)
0.98 (.0027) 0.98 (.0033)
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Table 2: Benchmark Model Comparison(p = 0.22)

Parameter RB Model RE Model RE Model∗

ρc 0.1183 0.1183 0.0124

Ψ 0.0118 0.0118 0.0162

αiy 0.5520 0.5520 0.6863

α 22.1925 0 0

Moment Data RB Model RE Model RE Model∗

µyx 1.10 1.11 0.98 0.98

µix 0.029 0.021 0.023 0.015

ρyx 0.99 0.98 0.97 0.98

ρix 0.30 0.27 −0.26 −0.27

ρi/x,x −0.47 −0.13 0.13 0.12

ρiy 0.42 0.34 −0.18 −0.20

ρi/x,y −0.46 −0.30 0.07 −0.05

ρy 0.88 0.75 0.83 0.82

ρi 0.26 0.62 0.69 0.63

ρi/x 0.98 0.62 0.69 0.63
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Table 3: Endogenous-Sales Model Comparision(p = 0.08)

Parameters RB RE RE∗

ϕ 0.1 0.1 0.1

ρc 0.9686 0.9686 0.9871

Ψ 0.0128 0.0128 0.0060

αi 0.1704 0.1704 0.2397

αy 0.2466 0.2466 0.1251

α 111.6 0 0

Moment Data RB RE RE∗

µyx 1.10 1.09 1.04 1.10

µix 0.025 0.027 0.010 0.038

ρyx 0.99 0.99 1.00 0.98

ρix 0.23 0.20 0.16 0.15

ρiy 0.36 0.35 0.25 0.33

ρi/x,x −0.87 −0.83 0.70 −0.03

ρi/x,y −0.85 −0.85 0.69 −0.04

ρy 0.88 0.88 0.92 0.91

ρi 0.08 0.28 0.29 0.25

ρi/x 0.85 0.83 0.97 0.08
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Table 4: Performance of the SOA model

Parameter Estimated Value

ρc 0.8732

Ψ 0.0161

αiy 0.2781

αs 2.0940

Moment Data SOA Model

µyx 1.10 1.32

µix 0.029 0.116

ρix 0.30 0.25

ρiy 0.42 0.38

ρi/x,x −0.47 −0.14

ρi/x,y −0.46 −0.42

ρyx 0.99 0.94

ρy 0.88 0.73

ρi 0.26 0.77

ρi/x 0.98 0.77

Table 5: Performance of the Model Prior to and During Great Moderation: Endogenous-Sales Model

Moment Data (1967-1983) Model Data (1984-2007) Model

p = 0.02 (α = 208.6) p = 0.23 (α = 379.0)

σyx 1.04 1.02 1.06 1.03

σiy 0.31 0.37 0.75 0.66

σi/x,y 1.07 1.06 1.17 1.23

ρi/x,y −0.94 −0.99 −0.75 −0.55
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